(本題滿分12分)
已知數(shù)列為公差不為的等差數(shù)列,為前項(xiàng)和,和的等差中項(xiàng)為,且.令數(shù)列的前項(xiàng)和為.
(Ⅰ)求及;
(Ⅱ)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.
(Ⅰ),
(Ⅱ)當(dāng)可以使成等比數(shù)列.
【解析】
試題分析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040510215496879808/SYS201304051022497812709770_DA.files/image006.png">為等差數(shù)列,設(shè)公差為,則由題意得
整理得
所以……………3分
由
所以……………5分
(Ⅱ)假設(shè)存在
由(Ⅰ)知,,所以
若成等比,則有
………8分
,。。。。。(1)
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040510215496879808/SYS201304051022497812709770_DA.files/image016.png">,所以,……………10分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040510215496879808/SYS201304051022497812709770_DA.files/image018.png">,當(dāng)時(shí),帶入(1)式,得;
綜上,當(dāng)可以使成等比數(shù)列.……………12分
考點(diǎn):本題考查了數(shù)列的通項(xiàng)公式及前N項(xiàng)和的求法
點(diǎn)評:高考中中的數(shù)列解答題考查的的熱點(diǎn)為求數(shù)列的通項(xiàng)公式、等差(比)數(shù)列的性質(zhì)及數(shù)列的求和問題.因此在高考復(fù)習(xí)的后期,要特別注意加強(qiáng)對由遞推公式求通項(xiàng)公式、求有規(guī)律的非等差(比)數(shù)列的前n項(xiàng)和等的專項(xiàng)訓(xùn)練.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com