已知F1、F2為橢圓E的左右兩個焦點(diǎn),拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),設(shè)P為橢圓與拋物線的一個交點(diǎn),如果橢圓離心率為e,且|PF1|=e|PF2|則e的值為( )
A.
B.
C.
D.
【答案】分析:先根據(jù)拋物線定義可知|PF1|=e|PF2|=e(到拋物線準(zhǔn)線的距離)推斷出拋物線的準(zhǔn)線與橢圓的準(zhǔn)線重合,進(jìn)而分別表示出拋物線和橢圓的準(zhǔn)線方程,使其相等求得a和c的關(guān)系,則橢圓的離心率可得.
解答:解:由橢圓第二定義是|PF1|=e(x+
  由拋物線的定義可知到焦點(diǎn)與準(zhǔn)線的距離相等|PF1|=e|PF2|=e(到拋物線準(zhǔn)線的距離)
∴拋物線的準(zhǔn)線與橢圓的準(zhǔn)線重合,依題意可知拋物線的準(zhǔn)線方程為x=-3c
   橢圓準(zhǔn)線為x=--
=3c,即a2=3c2
∴e==
故選C
點(diǎn)評:本題主要考查了橢圓的應(yīng)用.解題的關(guān)鍵是判斷出橢圓和拋物線的準(zhǔn)線重合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點(diǎn),過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率e=
3
2
,則橢圓的方程為( 。
A、
x2
4
+
y2
3
=1
B、
x2
16
+
y2
3
=1
C、
x2
16
+
y2
4
=1
D、
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓E的兩個左右焦點(diǎn),拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),設(shè)P為橢圓與拋物線的一個交點(diǎn),如果橢圓離心率e滿足|PF1|=e|PF2|,則e的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為橢圓
x2
25
+
y2
9
=1
的兩個焦點(diǎn),點(diǎn)P是橢圓上的一個動點(diǎn),則|PF1|•|PF2|的最小值是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn),B為橢圓短軸的一個端點(diǎn),
BF1
BF2
1
2
F1F2
2
則橢圓的離心率的取值范圍是
(0,
1
2
]
(0,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•荊州模擬)已知F1、F2為橢圓C:
x2
m+1
+
y2
m
=1的兩個焦點(diǎn),P為橢圓上的動點(diǎn),則△F1PF2面積的最大值為2,則橢圓的離心率e為(  )

查看答案和解析>>

同步練習(xí)冊答案