如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點(diǎn),F(xiàn)是DC上的點(diǎn)且DF=AB,PH為△PAD邊上的高.

(1)證明:PH⊥平面ABCD;
(2)若PH=1,AD=,F(xiàn)C=1,求三棱錐E-BCF的體積;
(3)證明:EF⊥平面PAB.

(1)見解析    (2)    (3)見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正方體中,,,,,分別是棱,,
,,的中點(diǎn).求證:
(1)直線∥平面
(2)直線⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=" CD=" CF.
(1)求證:BD⊥平面AED;
(2)求二面角F—BD—C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正三棱柱中,,,D、E分別是、的中點(diǎn),

(1)求證:面⊥面BCD;
(2)求直線與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長(zhǎng)方體中,,,點(diǎn)的中點(diǎn)。

(1)求證:直線∥平面
(2)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC的中點(diǎn).
(1)求證:PA//平面BDM;
(2)求直線AC與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1.

(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知為平行四邊形,,,,點(diǎn)上,,相交于.現(xiàn)將四邊形沿折起,使點(diǎn)在平面上的射影恰在直線上.
(1)求證:平面;
(2)求折后直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,,Q為AD的中點(diǎn).

(1)若PA=PD,求證:平面平面PAD;
(2)點(diǎn)M在線段上,PM=tPC,試確定實(shí)數(shù)t的值,使PA//平面MQB.

查看答案和解析>>

同步練習(xí)冊(cè)答案