(1)求二面角E—AC—D的大。
(2)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?若存在,求出點(diǎn)F;若不存在,請說明理
由.
解:(1)作EM⊥AD于M,∵PA⊥平面ABCD,
∴平面PAD⊥平面ABCD,
∴EM⊥平面ABCD.
作MN⊥AC于N,連結(jié)NE,則NE⊥AC.
∴∠ENM即為二面角E—AC—D的平面角,
∵EM=PA=a,AM=a,
MN=AM·sin60°=a·=a.
∴tanENM=.
∴∠ENM=30°.
∴二面角E-AC—D的大小為30°.
(2)解法1:取PC中點(diǎn)F,PE中點(diǎn)Q,連結(jié)FQ、BF、BQ,設(shè)AC∩BD=O,連OE,
則OE∥BQ,QF∥CE,∴平面BQF∥平面ACE.
∴BF∥平面ACE.
∴在棱PC上存在中點(diǎn)F,使BF∥平面AEC.
解法2:建系如圖,A(0,0,0),B(a,-a,0),D(0,a,0),C(a,a,0),P(0,0,a),E(0,a,a),
∴(0,a,a),(a,a,0)(a,a,-a).
設(shè)=λ=(λa,λa,-λa),又=(a,a,a),
∴=+=(a(λ-1),(1+λ)a,a(1-λ)
令=λ1+λ2,
∴=λ1(a,a,0)+λ2(0,a,a),
則即
∴當(dāng)λ=時,=-+,
即與,共面,此時F為BC中點(diǎn).又BF平面ACE,∴BF∥平面ACE.
解法3:取PC中點(diǎn)F,由=+=+(+)=+
+=+ (-)+ (-)=
-,
∴與、共面.又BF平面ACE,∴BF∥平面ACE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com