以橢圓的中心為頂點,右焦點為焦點的拋物線方程是     .

試題分析:因為橢圓的中心為頂點的右焦點為(2,0),所以 ,故拋物線開口向右,2p=8,則可知所求的拋物線方程為,故答案為。
點評:本題考查拋物線標(biāo)準(zhǔn)方程的求法.在求拋物線的標(biāo)準(zhǔn)方程時,一定要先判斷出開口方向,再設(shè)方程
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)點到直線的距離與它到定點的距離之比為,并記點的軌跡為曲線
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),過點的直線與曲線相交于兩點,當(dāng)線段的中點落在由四點構(gòu)成的四邊形內(nèi)(包括邊界)時,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P為橢圓上一點,且∠PF1F2=30o,∠PF2F1=45o,其中F1,F(xiàn)2為橢圓的兩個焦點,則橢圓的離心率e的值等于(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與曲線的交點的個數(shù)是        個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果雙曲線上一點P到它的右焦點距離是8,那么點P到它的左焦點的距離是( )    
A.4B.12C.4或12D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線為焦點,為準(zhǔn)線,準(zhǔn)線與軸交點為
(1)求
(2)過點的直線與拋物線交于兩點,直線與拋物線交于點.
①設(shè)三點的橫坐標(biāo)分別為,計算:的值;
②若直線與拋物線交于點,求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的離心率為2,則雙曲線的離心率為(    )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點到雙曲線的一條漸近線的距離為,則該雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,設(shè)點分別是橢圓的左、右焦點,為橢圓上任意一點,且最小值為

(1)求橢圓的方程;
(2)若動直線均與橢圓相切,且,試探究在軸上是否存在定點,點的距離之積恒為1?若存在,請求出點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案