【題目】保險公司統(tǒng)計的資料表明:居民住宅距最近消防站的距離(單位:千米)和火災(zāi)所造成的損失數(shù)額(單位:千元)有如下的統(tǒng)計資料:

(1)請用相關(guān)系數(shù)(精確到0.01)說明之間具有線性相關(guān)關(guān)系;

(2)求關(guān)于的線性回歸方程(精確到0.01);

(3)若發(fā)生火災(zāi)的某居民區(qū)距最近的消防站10.0千米,請評估一下火災(zāi)損失(精確到0.01).

參考數(shù)據(jù):,,,

參考公式:

回歸直線方程為,其中,,為樣本平均值.

【答案】(1)見解析(2)(3)火災(zāi)損失大約為千元

【解析】分析:利用相關(guān)系數(shù)計算公式,即可求得結(jié)果

由題中數(shù)據(jù)計算出,然后計算出回歸方程的系數(shù),,即可得回歸方程

代入即可評估一下火災(zāi)的損失

詳解:(1)

所以之間具有很強的線性相關(guān)關(guān)系;

(2)

,

的線性回歸方程為

(3)當(dāng)時,,

所以火災(zāi)損失大約為千元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取5所學(xué)校,對學(xué)生進行視力檢查.

(1)求應(yīng)從小學(xué)、中學(xué)中分別抽取的學(xué)校數(shù)目;

(2)若從抽取的5所學(xué)校中抽取2所學(xué)校作進一步數(shù)據(jù)

①列出所有可能抽取的結(jié)果;

②求抽取的2所學(xué)校至少有一所中學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:已知函數(shù)

Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數(shù)a;

Ⅱ)若a=1,求f(x)的極值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育部門為了解全市高三學(xué)生的身高發(fā)育情況,從本市全體高三學(xué)生中隨機抽取了100人的身高數(shù)據(jù)進行統(tǒng)計分析.經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身高不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計該市高一學(xué)生的身高概率.

(1)求該市高三學(xué)生身高高于1.70米的概率,并求圖1中、、的值.

(2)若從該市高三學(xué)生中隨機選取3名學(xué)生,記為身高在的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望;

(3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高三學(xué)生的身高滿足近似于正態(tài)分布的概率分布,則認為該市高三學(xué)生的身高發(fā)育總體是正常的.試判斷該市高三學(xué)生的身高發(fā)育總體是否正常,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實數(shù)x,y滿足2x﹣3≤ln(x+y+1)+ln(x﹣y﹣2),則xy=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于命題:存在一個常數(shù),使得不等式對任意正數(shù),恒成立.

(1)試給出這個常數(shù)的值;

(2)在(1)所得結(jié)論的條件下證明命題;

(3)對于上述命題,某同學(xué)正確地猜想了命題:“存在一個常數(shù),使得不等式對任意正數(shù)恒成立.”觀察命題與命題的規(guī)律,請猜想與正數(shù),,相關(guān)的命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射手射擊1次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4次,且他各次射擊是否擊中目標(biāo)相互之間沒有影響.有下列結(jié)論:

①他第3次擊中目標(biāo)的概率是0.9; ②他恰好擊中目標(biāo)3次的概率是0.93×0.1;

③他至少擊中目標(biāo)1次的概率是1-0.14 ④他恰好有連續(xù)2次擊中目標(biāo)的概率為3×0.93×0.1

其中正確結(jié)論的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中, ,E,F(xiàn)分別是底邊AB,CD的中點,把四邊形BEFC沿直線EF折起,使得面BEFC⊥面ADFE,若動點P∈平面ADFE,設(shè)PB,PC與平面ADFE所成的角分別為θ1 , θ2(θ1 , θ2均不為0).若θ12 , 則動點P的軌跡為(

A.直線
B.橢圓
C.圓
D.拋物線

查看答案和解析>>

同步練習(xí)冊答案