已知函數(shù)f(x)=-x3x2,g(x)=aln x,a∈R.
(1)若對(duì)任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設(shè)F(x)=P是曲線yF(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線yF(x)上總存在另一點(diǎn)Q,使得△POQ中的∠POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.
(1)(-∞,-1](2)(-∞,0]
(1)由g(x)≥-x2+(a+2)x,得(x-ln x)ax2-2x..
由于x∈[1,e],ln x≤1≤x,且等號(hào)不能同時(shí)取得,所以ln xxx-ln x>0.
從而a恒成立,amin.(4分)
設(shè)t(x)=x∈[1,e].求導(dǎo),得t′(x)=.(6分)
x∈[1,e],x-1≥0,ln x≤1,x+2-2ln x>0,從而t′(x)≥0,t(x)在[1,e]上為增函數(shù).
所以t(x)mint(1)=-1,所以a的取值范圍是(-∞,-1].(8分)
(2)F(x)=
設(shè)P(t,F(t))為曲線yF(x)上的任意一點(diǎn).
假設(shè)曲線yF(x)上存在一點(diǎn)Q(-t,F(-t)),使∠POQ為鈍角,
<0.(10分)
①若t≤-1,P(t,-t3t2),Q(-t,aln(-t)),=-t2aln(-t)·(-t3t2).
由于<0恒成立,a(1-t)ln(-t)<1.
當(dāng)t=-1時(shí),a(1-t)ln(-t)<1恒成立.
當(dāng)t<-1時(shí),a恒成立.由于>0,所以a≤0.(12分)
②若-1<t<1,且t≠0,P(t,-t3t2),Q(-t,t3t2),則=-t2+(-t3t2)·(t3t2)<0,
t4t2+1>0對(duì)-1<t<1,且t≠0恒成立.(14分)
③當(dāng)t≥1時(shí),同①可得a≤0.
綜上所述,a的取值范圍是(-∞,0].(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),其中,
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論的單調(diào)性;
(3)若有兩個(gè)極值點(diǎn),記過(guò)點(diǎn)的直線的斜率為,問(wèn)是否存在,使得?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)證明:
(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù),過(guò)曲線上的點(diǎn)的切線方程為.
(1)若時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2-mlnx+(m-1)x,當(dāng)m≤0時(shí),試討論函數(shù)f(x)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)f(x)=-x3+x2+2ax.
(1)若f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為-,求f(x)在該區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)=ex+x-2,g(x)=ln x+x2-3.若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則  (  ).
A.g(a)<0<f(b)B.f(b)<0<g(a)
C.0<g(a)<f(b)D.f(b)<g(a)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=x(ln xax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(  ).
A.(-∞,0) B.(0,)C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=aln xx在區(qū)間[2,3]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案