數(shù)列{an},Sn為它的前n項(xiàng)的和,已知a1=-2,an+1=Sn,當(dāng)n≥2時,求:an和Sn

Sn=-2n. an=-2n-1

解析試題分析:∵an+1=Sn,又∵an+1=Sn+1-Sn,∴Sn+1=2Sn.   2分
∴{Sn}是以2為公比,首項(xiàng)為S1=a1=-2的等比數(shù)列.  6分
∴Sn=a1×2n-1=-2n. 10分
∵當(dāng)n≥2時,an=Sn-Sn-1=-2n-1. 12分
考點(diǎn):本題考查了熟練通項(xiàng)公式的求法
點(diǎn)評:應(yīng)用公式求解通項(xiàng)公式時,要注意n≥2這個前提,屬基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

表示等差數(shù)列的前項(xiàng)的和,且 
(1)求數(shù)列的通項(xiàng);
(2)求和…… 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:,  ,,前項(xiàng)和為的數(shù)列滿足:,又。
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足a1=2,an+1=an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan·2n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,若對任意,都有.
⑴求數(shù)列的首項(xiàng);
⑵求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
⑶數(shù)列滿足,問是否存在,使得恒成立?如果存在,求出 的值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知數(shù)列的通項(xiàng)公式為,數(shù)列的前n項(xiàng)和為,且滿足
(I)求的通項(xiàng)公式;
(II)在中是否存在使得中的項(xiàng),若存在,請寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,點(diǎn)均在直線上.
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),試證明數(shù)列為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列{an}、{bn}分別是首項(xiàng)均為2的各項(xiàng)均為正數(shù)的等比數(shù)列和等差數(shù)列,且

(I)   求數(shù)列{an}、{bn}的通項(xiàng)公式;
(II )求使<0.001成立的最小的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知數(shù)列滿足,則等于 (  )

A. B.0 C. D.

查看答案和解析>>

同步練習(xí)冊答案