精英家教網(wǎng)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且滿足
sinB+sinC
sinA
=
2-cosB-cosC
cosA

(1)證明:b+c=2a;
(2)如圖,點O是△ABC外一點,設(shè)∠AOB=θ(0<θ<π),OA=2OB=2,當(dāng)b=c時,求平面四邊形OACB面積的最大值.
分析:(1)由已知條件化簡可得sinC+sinB=2sinA,再由正弦定理可得b+c=2a;
(2)由條件和(1)的結(jié)論可得△ABC為等邊三角形,利用S△OACB=S△OAB+S△OBC=
1
2
OA•OB•sinθ+
3
4
AB2
,結(jié)合輔助角公式,可得平面四邊形OACB面積的最大值.
解答:(1)證明:∵
sinB+sinC
sinA
=
2-cosB-cosC
cosA

∴sinBcosA+sinCcosA=2sinA-cosBsinA-cosCsinA,
∴sinBcosA+cosBsinA+sinCcosA+cosCsinA=2sinA,
∴sin(A+B)+sin(A+C)=2sinA,
∴sinC+sinB=2sinA,
∴b+c=2a;
(2)解:∵b+c=2a,b=c,
∴a=b=c,∴△ABC為等邊三角形,
∴S△OACB=S△OAB+S△OBC=
1
2
OA•OB•sinθ+
3
4
AB2
=sinθ+
3
4
(OA2+OB2-2OA•OB•cosθ)

=sinθ-
3
cosθ+
5
3
4
=2sin(θ-
π
3
)+
5
3
4

∵0<θ<π,
-
π
3
<θ-
π
3
3
,
當(dāng)且僅當(dāng)θ-
π
3
=
π
2
,即θ=
6
時取最大值,最大值為2+
5
3
4
點評:本題考查兩角和與差的三角函數(shù)公式,涉及余弦定理和三角形的面積,考查三角函數(shù)的性質(zhì),正確表示平面四邊形OACB面積是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案