【題目】如圖,港口在港口的正東120海里處,小島在港口的北偏東的方向,且在港口北偏西的方向上,一艘科學(xué)考察船從港口出發(fā),沿北偏東方向以20海里/小時(shí)的速度駛離港口.一艘給養(yǎng)快艇從港口60海里/小時(shí)的速度駛向小島,在島轉(zhuǎn)運(yùn)補(bǔ)給物資后以相同的航速送往科考船.已知兩船同時(shí)出發(fā),補(bǔ)給裝船時(shí)間為1小時(shí).

1)求給養(yǎng)快艇從港口到小島的航行時(shí)間;

2)給養(yǎng)快艇駛離港口后,最少經(jīng)過多少小時(shí)能和科考船相遇?

【答案】(1)快艇從港口到小島的航行時(shí)間為小時(shí)(2)給養(yǎng)快艇駛離港口后,最少經(jīng)過3小時(shí)能和科考船相遇

【解析】

1)給養(yǎng)快艇從港口到小島的航行時(shí)間,已知其速度,則只要求得的路程,再利用路程公式即可求得所需的時(shí)間.

2)由(1)知,給養(yǎng)快艇從港口駛離2小時(shí)后,從小島出發(fā)與科考船匯合,根據(jù)題意確定各邊長和各角的值,然后由余弦定理解決問題.

1)由題意知,在中,,,

所以,

于是

而快艇的速度為海里/小時(shí),

所以快艇從港口到小島的航行時(shí)間為小時(shí).

2)由(1)知,給養(yǎng)快艇從港口駛離2小時(shí)后,從小島出發(fā)與科考船匯合.為使航行的時(shí)間最少,快艇從小島駛離后必須按直線方向航行,

設(shè)給養(yǎng)快艇駛離港口小時(shí)后恰與科考船在處相遇.

中,,

而在中,,,

由余弦定理,得,

,

化簡,得,

解得(舍去).

.

即給養(yǎng)快艇駛離港口后,最少經(jīng)過3小時(shí)能和科考船相遇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).

1 的值

2)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,,分別是的中點(diǎn).

)求異面直線所成角的余弦值.

)在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)上異于頂點(diǎn)的任意一點(diǎn),過的直線于另一點(diǎn),交軸正半軸于點(diǎn),且有,當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.

1)求的方程;

2)若直線,且相切于點(diǎn),試問直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù).

I)若,求實(shí)數(shù)的取值范圍;

II)當(dāng)時(shí),討論方程上的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差,首項(xiàng),且成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前n項(xiàng)和;

3)比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是( )

A. 為真命題,則為真命題 B. 恒成立

C. 命題“”的否定是“ D. 命題“若”的逆否命題是“若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題:

,則的逆否命題為真命題

函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

③若為假命題,則,均為假命題

④對于命題,,則為:,

其中真命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左、右頂點(diǎn)分別為A,B,離心率為,點(diǎn)P1,)為橢圓上一點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)如圖,過點(diǎn)C0,1)且斜率大于1的直線l與橢圓交于M,N兩點(diǎn),記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.

查看答案和解析>>

同步練習(xí)冊答案