已知函數(shù),.
(Ⅰ)判定在上的單調(diào)性;
(Ⅱ)求在上的最小值;
(Ⅲ)若, ,求實(shí)數(shù)的取值范圍.
解:(Ⅰ∴在上的單調(diào)遞減.
(Ⅱ)∴在上的最小值為
(Ⅲ)的取值范圍是
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)的運(yùn)用
(1)根據(jù)已知條件,求解定義域和導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系求解得到單調(diào)區(qū)間。
(2)同上,求解導(dǎo)數(shù),分析單調(diào)性,然后得到極值,從而求解最值。
(3)要證明不等式恒成立,分離參數(shù)的思想,構(gòu)造新函數(shù),求解導(dǎo)數(shù)得到最值,進(jìn)而得到參數(shù)a的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com