【題目】已知圓C1:x2+y2=b2與橢圓C2:=1(a>b>0),若在橢圓C2上存在一點(diǎn)P,使得由點(diǎn)P所作的圓C1的兩條切線互相垂直,則橢圓C2的離心率的取值范圍是(  )

A. B. C. D.

【答案】D

【解析】

設(shè)兩切點(diǎn)分別為A,B,易知四邊形OAPB是正方形,可得|OP|,結(jié)合a2-c2=b2,求得橢圓C的離心率的取值范圍

如圖,P為橢圓上一點(diǎn),設(shè)兩切點(diǎn)分別為A,B,連接OA,OB,OP,

則OA=OB=b,OA⊥AP,OB⊥BP,AP⊥BP,∴四邊形OAPB為正方形,

∴|OP|=b, ∴b<|OP|≤a,∴2b2≤a2,即2(a2-c2)≤a2,

∴a2≤2c2,即e=.又0<e<1,∴≤e<1,

∴橢圓C的離心率的取值范圍是[,1),故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 , 離心率為 ,以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓與直線x﹣y+ =0相切,過點(diǎn)F2的直線l與橢圓C相交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)若 =3 ,求直線l的方程;
(3)求△F1MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4月23日是世界讀書日,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為讀書謎,低于60分鐘的學(xué)生稱為非讀書謎

1的值并估計(jì)全校3000名學(xué)生中讀書謎大概有多少?(將頻率視為概率)

2根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為讀書謎與性別有關(guān)?

非讀書迷

讀書迷

合計(jì)

15

45

合計(jì)

附:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對(duì)任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C的對(duì)邊分別為a,b,c.角A,B,C成等差數(shù)列.
(1)求cosB的值;
(2)邊a,b,c成等比數(shù)列,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:=1(a>b>0)的離心率e=,點(diǎn)P(-,1)在該橢圓上.

(1)求橢圓C的方程;

(2)若點(diǎn)A,B是橢圓C上關(guān)于直線y=kx+1對(duì)稱的兩點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是(  )

①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).

A. ①② B. ②③

C. ①④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長分別是,已知,.()若的面積等于,求)若,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案