已知矩陣A的逆矩陣A-1,求矩陣A的特征值.
λ1=-1,λ2=4

解 因?yàn)锳-1A=E,所以A=(A-1)-1.
因?yàn)锳-1,所以A=(A-1)-1,
于是矩陣A的特征多項(xiàng)式為f(λ)==λ2-3λ-4.
令f(λ)=0,解得A的特征值λ1=-1,λ2=4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,直線在矩陣對(duì)應(yīng)的變換下得到的直線過(guò)點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)曲線2x2+2xy+y2=1在矩陣A(a>0)對(duì)應(yīng)的變換作用下得到的曲線為x2+y2=1.
(1)求實(shí)數(shù)a、b的值;
(2)求A2的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知當(dāng)時(shí),函數(shù)的最小值為-4,則t的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求矩陣A=的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知2×2矩陣M=,矩陣M對(duì)應(yīng)的變換將點(diǎn)(2,1)變換成點(diǎn)(4,-1),求矩陣M將圓x2+y2=1變換后的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩陣M.
(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩陣A,B,求矩陣A-1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出30行30列的數(shù)表,其特點(diǎn)是每行每列都構(gòu)成等差數(shù)列,記數(shù)表主對(duì)角線上的數(shù)按順序構(gòu)成數(shù)列,存在正整數(shù)使成等差數(shù)列,試寫(xiě)出一組的值

查看答案和解析>>

同步練習(xí)冊(cè)答案