在△ABC中,a2+b2-c2=ab,則C為( 。
分析:直接利用余弦定理求出C的余弦值,然后求出角C的大小即可.
解答:解:在△ABC中,a2+b2-c2=ab,由余弦定理a2+b2-2abcosC=c2,
可得cosC=
1
2
,所以C=60°.
故選B.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查余弦定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a2=b2+c2+bc,則A=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a2=b2+c2+bc,則A等于(  )
A、120°B、60°C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a2-c2+b2=ab,則角C的大小為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a2+
2
ab+b2=c2
,則C等于( 。
A、45°B、60°
C、120°D、135°

查看答案和解析>>

同步練習(xí)冊(cè)答案