(2013•深圳二模)某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是( 。
分析:由三視圖可知,幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高2.的圓錐的一半,分別計(jì)算兩部分的體積,即可.
解答:解:由三視圖可知,幾何體是下部是半徑為2,高為1的圓柱的一半,
上部為底面半徑為2,高為2的圓錐的一半,
所以,半圓柱的體積為V1=
1
2
×22×π×1=2π,
上部半圓錐的體積為V2=
1
2
×
1
3
×π×22×2=
3

故幾何體的體積為V=V1+V2=
3
+2π
=
10
3
π

故選C.
點(diǎn)評(píng):本題考查三視圖求幾何體的表面積,考查計(jì)算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a=3,b=5,c=7.
(1)求角C的大;
(2)求sin(B+
π3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)非空數(shù)集A={a1,a2,a3,…,an}(n∈N*)中,所有元素的算術(shù)平均數(shù)記為E(A),即E(A)=
a1+a2+a3+…+an
n
.若非空數(shù)集B滿足下列兩個(gè)條件:
①B⊆A;
②E(B)=E(A),則稱B為A的一個(gè)“保均值子集”.
據(jù)此,集合{1,2,3,4,5}的“保均值子集”有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)i 為虛數(shù)單位,則 i+
1
i
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)函數(shù)f(x)=
lg(2-x)
x-1
的定義域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案