已知函數(shù)(k為常數(shù),e=2.71828……是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與x軸平行。
(1)求k的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中的導(dǎo)函數(shù),證明:對任意,

(1);(2)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(3)詳見解析.

解析試題分析:(1)先求導(dǎo)函數(shù),由導(dǎo)數(shù)的幾何意義得,列方程求;(2)求的解集和定義域求交集,得單調(diào)遞增區(qū)間;求的解集并和定義域求交集,得單調(diào)遞減區(qū)間,該題,可觀察當(dāng)時,;時,.所以單調(diào)區(qū)間可求;(3)思路一:考慮的最大值,證明最大值小于即可,但是考慮到解析式的復(fù)雜性,可對不等式等價變形;思路二:原不等式等價于
,記,利用導(dǎo)數(shù)可求其最大值為,從圖象可以判斷的圖象在直線的上方,也就是說恒成立,故,所以命題得證.
試題解析:(Ⅰ)由由于曲線處的切線與x軸平行,所以,因此
(Ⅱ)由(Ⅰ)得,令當(dāng)時,;當(dāng)時,,所以時,;時,. 因此的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間
(Ⅲ)證明因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/3/jpon42.png" style="vertical-align:middle;" />,所以因此對任意等價于 由(Ⅱ)知
所以因此當(dāng)時,單調(diào)遞增;當(dāng)單調(diào)遞增. 所以的最大值為 故 設(shè)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/c/hnbv2.png" style="vertical-align:middle;" />,所以時,單調(diào)遞增,
時,所以因此對任意
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、導(dǎo)數(shù) 在單調(diào)性上的應(yīng)用;3、利用導(dǎo)數(shù)求函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,則,滿足什么條件時,曲線處總有相同的切線?
(2)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時,若對任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).
(1)若,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時,對于任意,總有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,求函數(shù)上的最大值;
(2)令,若在區(qū)間上不單調(diào),求的取值范圍;
(3)當(dāng)時,函數(shù)的圖象與軸交于兩點(diǎn),且,又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè),求在區(qū)間上的最大值(其中e為自然對的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時具備下列三個條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.
,,請你分析能否采用函數(shù)模型y=作為生態(tài)環(huán)境改造投資方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若在區(qū)間單調(diào)遞增,求的最小值;
(2)若,對,使成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時,試討論的單調(diào)性;
(Ⅱ)設(shè),當(dāng)時,若對任意,存在,使,求實(shí)數(shù)取值范圍.

查看答案和解析>>

同步練習(xí)冊答案