【題目】已知點(diǎn)A(x1,y1),D(x2,y2)其中(x1<x2)是曲線y2=9x(y≥0).上的兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C且|BC|=3.
(Ⅰ)當(dāng)點(diǎn)B的坐標(biāo)為(1,0)時(shí),求直線AD的方程:
(Ⅱ)記△AOD的面積為S1,梯形ABCD的面積為S2,求的范圍
【答案】(Ⅰ)y=x+2;(Ⅱ).
【解析】
(Ⅰ)根據(jù)和的橫坐標(biāo)相等即可求解的坐標(biāo),再求兩點(diǎn)間的斜率利用點(diǎn)斜式求解即可.
(Ⅱ)設(shè)直線AD的方程為y=kx+m.聯(lián)立直線與曲線的方程再表達(dá)出關(guān)于的表達(dá)式,再根據(jù)直線與曲線的交點(diǎn)求出的范圍進(jìn)行求解即可.
(Ⅰ)由B(1,0),可得A(1,y1),
代入y2=9x,得到y1=3,
又|BC|=3,則x2﹣x1=3,可得x2=4,
代入y2=9x,得到y2=6,
則kAD1,可得直線AD的方程為y﹣3=x﹣1,即y=x+2;
(Ⅱ)設(shè)直線AD的方程為y=kx+m.M(0,m),m>0,
則S1=S△OMD﹣S△OMA.
由,得k2x2+(2km﹣9)x+m2=0,
所以 ,
又S2(y1+y2)(x2﹣x1)
所以
又注意到y1y2=330,所以k>0,m>0,
因?yàn)?/span>△=81﹣36km>0,所以0<km,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點(diǎn),,其坐標(biāo)滿足條件: 的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):① :②:③:④.
其中為“柯西函數(shù)”的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形沿對(duì)角線折起,當(dāng)以四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),異面直線與 所成的角為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M過(guò)兩點(diǎn)A(1,﹣1),B(﹣1,1),且圓心M在x+y﹣2=0上,
(Ⅰ)求圓M的方程;
(Ⅱ)設(shè)P是直線x+y+2=0上的動(dòng)點(diǎn).PC,PD是圓M的兩條切線,C,D為切點(diǎn),求四邊形PCMD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在幾何體中,底面為菱形,,與相交于點(diǎn),四邊形為直角梯形,,面面.
(1)證明:面面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于直線和點(diǎn)、,記,若,則稱點(diǎn),被直線l分隔,若曲線C與直線l沒(méi)有公共點(diǎn),且曲線C上存在點(diǎn),被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點(diǎn)、被直線分隔;
(2)若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;
(3)動(dòng)點(diǎn)M到點(diǎn)的距離與到y軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.
(l)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且直線與交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com