如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱

(Ⅰ)求證:;
(Ⅱ)求證:平面平面;
(Ⅲ)求二面角的余弦值

(Ⅰ)證明略
(Ⅱ)證明略
(Ⅲ)
解:(Ⅰ)設(shè)中點(diǎn)為,連結(jié),,………… 1分

,所以.
,所以.  ………………… 2分
,所以平面.
平面,所以.  ……… 4分
(Ⅱ)由已知,
,.
為正三角形,且,∴. …………………… 6分
,所以.
.
由(Ⅰ)知是二面角的平面角.
∴平面平面.       …………………………………………… 8分
(Ⅲ)方法1:由(Ⅱ)知平面.
,連結(jié),則.
是二面角的平面角. ………………………………… 10分
中,易求得.
,所以.  ………………………… 12分
.
即二面角的余弦值為.  …………………………………… 13分
方法2:由(Ⅰ)(Ⅱ)知,,兩兩垂直.     ……………………… 9分
為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系.

易知,.
,.  ……………………… 10分
設(shè)平面的法向量為,

,則,.
∴平面的一個(gè)法向量為.   ……………………… 11分
易知平面的一個(gè)法向量為.
. …………………………………… 12分
由圖可知,二面角為銳角.
∴二面角的余弦值為. …………………………………… 13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在三棱錐P—ABC中,已知點(diǎn)E,F(xiàn),G分別是所在棱的中點(diǎn),則下面結(jié)論中正確的是:     。
①平面EFG//平面PBC
②平面EFG平面ABC
是直線EF與直線PC所成的角
是平面PAB與平面ABC所成二面角的平面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


如圖,正方體ABCD-A1B1C1D1中,M、N分別為棱C1D1、C1C的中點(diǎn),有以下四個(gè)結(jié)論:

①直線AM與CC1是相交直線;  
②直線AM與BN是平行直線;③直線BN與MB1是異面直線;④直線AM與DD1是異面直線.其中正確的結(jié)論的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直四棱柱中,底面的菱形,,,點(diǎn)在棱上,點(diǎn)是棱的中點(diǎn).

(1)若的中點(diǎn),求證:
(2)求出的長(zhǎng)度,使得為直二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
在四棱錐P-ABCD中,底ABCD是矩形, PA⊥面ABCD, AP="AB=2," BC=, E、F、G分別為AD、PC、PD的中點(diǎn).
(1)求證: FG∥面ABCD
(2)求面BEF與面BAP夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分14分)如圖,正方體中,棱長(zhǎng)為
(1)求直線所成的角;
(2)求直線與平面所成角的正切值;
(3)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個(gè)不同的平面,      
下列命題正確的是 (   )
A.若B.若,則
C.若D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖(1)已知矩形中,、分別是、的中點(diǎn),點(diǎn)上,且,把沿著翻折,使點(diǎn)在平面上的射影恰為點(diǎn)(如圖(2))。
(1)求證:平面平面;
(2)求二面角的大小.

圖(1)                    圖(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成四面體ABCD,點(diǎn)E、F
分別為AC、BD的中點(diǎn),則下列命題中正確的是           。(將正確的命題序號(hào)全填上)
①EF∥AB                                  ②EF與異面直線AC與BD都垂直
③當(dāng)四面體ABCD的體積最大時(shí),AC=     ④AC垂直于截面BDE

查看答案和解析>>

同步練習(xí)冊(cè)答案