(12分)已知函數(shù)

(I)若的極值點(diǎn),求上的最小值和最大值;

(Ⅱ)若上是增函數(shù),求實(shí)數(shù)的取值范圍。

解析:(I)

     有極大值點(diǎn),極小值點(diǎn)。

     此時(shí)上是減函數(shù),在上是增函數(shù)。

上的最小值是-18,最大值是-6

(Ⅱ)

     

     當(dāng)時(shí),是增函數(shù),其最小值為

  

   時(shí)也符合題意,

  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第三次(3月)周測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(I)若a=-1,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45o,對于任意的t [1,2],函數(shù)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;

(Ⅲ)求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西西安臨潼華清中學(xué)高三下第二次自主命題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(I) 若,求的單調(diào)區(qū)間;

 (II)  已知的兩個(gè)不同的極值點(diǎn),且,若恒成立,求實(shí)數(shù)b的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省四校高二下學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題12分)

已知函數(shù),,的導(dǎo)函數(shù).

(I)若,求的值;(Ⅱ)求的單調(diào)減區(qū)間. 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)(解析版) 題型:解答題

(本題滿分12分)已知函數(shù).

(I) 求函數(shù)上的最大值.

(II)如果函數(shù)的圖像與軸交于兩點(diǎn)、,且.

的導(dǎo)函數(shù),若正常數(shù)滿足.

求證:.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大。

(II)當(dāng)時(shí),求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線過點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個(gè)動點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面;

(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案