如圖四棱錐P-ABCD的底面為正方形,PA⊥平面ABCD,AB=2,PC與平面ABCD成45°角,E、F分別為PA、PB的中點.  

(1)求異面直線DE與AF所成角的大小;

(2)設M是PC上的動點,試問當M在何處時,才能使AM⊥平面PBD,證明你的結論. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)如圖,建立空間直角坐標系,則A(0,0,0),F(xiàn)(1,0,),D(0,2,0),E(0,0,);(1,0,),(0,-2,).  

的夾角為θ,

則cos=,

∴DE與AF所成的角為arccos. 

(2)∵PA⊥平面ABCD,∴PA⊥BD.

        又ABCD是正方形,∴BD⊥AC,BD⊥平面PAC,∴BD⊥AM.

       由題意可設M點坐標為(t,t,2(2-t’),

又P(0,0,2),B(2,0,0),=(2,0,-2). 

設AM⊥PB,∴· =0,即2t-2×(2-t)=0.  

∴t=,∴||=,又||=4,

∴M在=2這位置于,AM⊥平面PBD.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=
1
3
GD,GB⊥GC.GB=GC=2,PG=4
,E是BC的中點.
(1)求證:PC⊥BG;
(2)求異面直線GE與PC所成角的余弦值;
(3)若F是PC上一點,且DF⊥GC,求
CF
CP
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:上海市模擬題 題型:解答題

如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ABC=90°,PA⊥平面ABCD,PA=BC=1,AB=,F(xiàn)是BC的中點.
(1)求證:DA⊥平面PAC;
(2)試在線段PD上確定一點G,使CG∥平面PAF,并求三棱錐A-CDG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省模擬題 題型:解答題

已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=GD,GB⊥GC,GB=GC=2,PC=4,E是BC的中點.
(Ⅰ)求證:PC⊥BG;
(Ⅱ)求異面直線GE與PC所成角的余弦值;
(Ⅲ)若F是PC上一點,且DF⊥GC,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P—ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=90°,PA=AB=1,AD=3,且∠ADC=arcsin.求:

(1)三棱錐P—ACD的體積;

(2)直線PC與AB所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年浙江省高考數(shù)學沖刺試卷A(理科)(解析版) 題型:解答題

已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且,E是BC的中點.
(1)求證:PC⊥BG;
(2)求異面直線GE與PC所成角的余弦值;
(3)若F是PC上一點,且的值.

查看答案和解析>>

同步練習冊答案