對關(guān)于的一元二次方程……,解決下列兩個問題:
(1)若是從三個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求方程有兩個不相等實根的概率;
(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求方程有兩個不相等實根的概率.
(1)
(2)

試題分析:設(shè)事件為“方程有兩個不相等實根”.
當(dāng)時,要方程有兩個不相等實根,需
(1)基本事件共9個:
.其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.
事件中包含6個基本事件,則事件發(fā)生的概率為
(2)試驗的全部結(jié)果所構(gòu)成的區(qū)域為
構(gòu)成事件的區(qū)域為(如圖示).

則所求的概率為
點評:主要是考查了等可能事件的概率的求解,掌握兩個概型是解題的關(guān)鍵,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)統(tǒng)計,隨機抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下:

(1)求出表中的值;
(2)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于次的學(xué)生中任選人,求至少一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲乙兩人玩猜數(shù)字游戲,先由甲在心中任想一個數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,且。若,則稱甲乙“心有靈犀”。現(xiàn)任意找兩人玩這個游戲,得出他們“心有靈犀”的概率為 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

2013年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別
PM2.5濃度
(微克/立方米)
頻數(shù)(天)
頻率
 第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將包含甲、乙兩人的4位同學(xué)平均分成2個小組參加某項公益活動,則甲、乙兩名同學(xué)分在同一小組的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球5個,白球3個,藍球2個,F(xiàn)從盒子中每次任意取出一個球,若取出的是藍球則結(jié)束,若取出的不是藍球則將其放回箱中,并繼續(xù)從箱中任意取出一個球,但取球次數(shù)最多不超過3次。求:
(1)取兩次就結(jié)束的概率;
(2)正好取到2個白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從{1,2,3,4,5}中隨機選取一個數(shù)為,從{1,2,3}中隨機選取一個數(shù)為,則的概率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一箱里有10件產(chǎn)品,其中3件次品,現(xiàn)從中任意抽取4件產(chǎn)品檢查.
(1)求恰有1件次品的概率;
(2)求至少有1件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
朵朵小朋友用紅、黃、藍三種顏色的彩筆給下列三個圖形隨機涂色,每個圖形只涂一種顏色,求:

(Ⅰ)三個圖形顏色不全相同的概率;
(Ⅱ)三個圖形顏色恰有兩個相同的概率.

查看答案和解析>>

同步練習(xí)冊答案