(本小題滿分14分)

已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且交于點(diǎn).

(1) 求橢圓的方程;

(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.

 

【答案】

(1)  (2) 滿足條件的點(diǎn)有兩個(gè)

【解析】

試題分析:(1) 解法1:設(shè)橢圓的方程為,

依題意:    解得:   

∴ 橢圓的方程為.

解法2:設(shè)橢圓的方程為,

根據(jù)橢圓的定義得,即, 

,  ∴.  

∴ 橢圓的方程為.

(2)解法1:設(shè)點(diǎn),,則,

,

三點(diǎn)共線,

.  

,                  

化簡(jiǎn)得:. ① 

,即

∴拋物線在點(diǎn)處的切線的方程為,即. ②

同理,拋物線在點(diǎn)處的切線的方程為 .    ③        

設(shè)點(diǎn),由②③得:,

,則 .

代入②得 ,   

,代入 ① 得 ,即點(diǎn)的軌跡方程為.

 ,則點(diǎn)在橢圓上,而點(diǎn)又在直線上,

∵直線經(jīng)過橢圓內(nèi)一點(diǎn),

∴直線與橢圓交于兩點(diǎn).

∴滿足條件 的點(diǎn)有兩個(gè).

解法2:設(shè)點(diǎn),,,

,即

∴拋物線在點(diǎn)處的切線的方程為

, ∴ .

∵點(diǎn)在切線上,  ∴.       ①  

同理, . ②    

綜合①、②得,點(diǎn)的坐標(biāo)都滿足方程.

∵經(jīng)過的直線是唯一的,

∴直線的方程為,  

∵點(diǎn)在直線上,     ∴

∴點(diǎn)的軌跡方程為.  

 ,則點(diǎn)在橢圓上,又在直線上,

∵直線經(jīng)過橢圓內(nèi)一點(diǎn),

∴直線與橢圓交于兩點(diǎn).

∴滿足條件 的點(diǎn)有兩個(gè).

解法3:顯然直線的斜率存在,設(shè)直線的方程為,

消去,得.

設(shè),則

,即.

∴拋物線在點(diǎn)處的切線的方程為,即.

, ∴.                                

同理,得拋物線在點(diǎn)處的切線的方程為.

解得                    

,

∴點(diǎn)在橢圓上.

.

化簡(jiǎn)得.(*)

,

可得方程(*)有兩個(gè)不等的實(shí)數(shù)根. ∴滿足條件的點(diǎn)有兩個(gè).

考點(diǎn):橢圓拋物線方程及性質(zhì),直線與橢圓拋物線相交的應(yīng)用

點(diǎn)評(píng):求橢圓方程采用了待定系數(shù)法與定義法,其中待定系數(shù)法是常用的方法,而利用定義求解能使一些題目的計(jì)算量較小很多;第二問在直線與圓錐曲線相交的背景下常聯(lián)立方程,利用韋達(dá)定理求解

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案