設(shè)數(shù)列S1,S2,…是一個嚴格遞增的正整數(shù)數(shù)列.
(1)若SSk+1,SSk+1是該數(shù)列的其中兩項,求證:SSk+1≤SSk+1;
(2)若該數(shù)列的兩個子數(shù)列SS1,SS2…和SS1+1,SS2+1,…都是等差數(shù)列,求證:這兩個子數(shù)列的公差相等;
(3)若(2)中的公差為1,求證:SSk+1≥SSk+1,并證明數(shù)列{Sn}也是等差數(shù)列.
分析:(1)由題設(shè)條件知:Sk+1≤Sk+1∴SSk+1≤SSk+1.
(2)設(shè)兩子數(shù)列的首項分別為a,b,公差分別為d1,d2.由題設(shè)知a-b<(k-1)(d2-d1)≤a-b+d1,由此可知d1=d2
(3)由題設(shè)知SSk+1=SSk+1.數(shù)列{Sn}是嚴格遞增的正整數(shù)數(shù)列,所以SSk+1≤SSk+1,由此能夠?qū)С鯯k+1=Sk+1,故數(shù)列{Sn}是公差為1的等差數(shù)列.
解答:解:(1)證明:由條件知:Sk+1≤Sk+1∴SSk+1≤SSk+1.
(2)設(shè)兩子數(shù)列的首項分別為a,b,公差分別為d1,d2.
∵SSk<SSk+1≤SSk+1
∴a+(k-1)d1<b+(k-1)d2≤a+kd1
即a-b<(k-1)(d2-d1)≤a-b+d1
上式左,右端皆為常數(shù),中間的k∈N,故必須d2-d1=0,
∴d1=d2
(3)∵公差為1,∴SSk+1=SSk+1.
又數(shù)列{Sn}是嚴格遞增的正整數(shù)數(shù)列,
∴SSk+1≤SSk+1
∴SSk+1≤SSk+1
又由(1)知∴SSk+1≥SSk+1∴SSk+1=SSk+1.
故Sk+1=Sk+1(k∈N),即數(shù)列{Sn}是公差為1的等差數(shù)列.
點評:本題考查等差數(shù)列的性質(zhì)和應(yīng)用,解題時要注意公式的靈活運用.