已知函數(shù)在(一1,1)上有意義,=-1,且對(duì)任意的,(一1,1),都有

(1)判斷的奇偶性;

(2)若數(shù)列滿足,(),求;

(3)求證:

解:(1)令,則2(0)=(0),得(0)=0,

    又令,,

    則

    即,故為奇函數(shù).

    (2)∵

             =

    ∴

    ∴{}是以一1為首項(xiàng)、以2為公比的等比數(shù)列,故=

(3)

=-(1+++…+)

=

    又

    故。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•哈爾濱一模)已知函數(shù)f(x)=lnx,g(x)=ex
( I)若函數(shù)φ(x)=f(x)-
x+1x-1
,求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)的圖象上一點(diǎn)A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)已知函數(shù)f(x)=
6
x2+1

(1)解不等式f(x)≥2
(2)直接寫(xiě)出函數(shù)定義域、值域、奇偶性和單調(diào)遞減區(qū)間(不必寫(xiě)解答過(guò)程);
(3)在直角坐標(biāo)系中,畫(huà)出函數(shù)f(x)=
6
x2+1
大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•瀘州一模)已知函數(shù)f(x)=
a
x
+x+(a-1)lnx+15a
,F(xiàn)(x)=-2x3+3(a+2)x2+6x-6a-4a2,其中a<0且a≠-1.
(Ⅰ) 當(dāng)a=-2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 若x=1時(shí),函數(shù)F(x)有極值,求函數(shù)F(x)圖象的對(duì)稱中心坐標(biāo);
(Ⅲ)設(shè)函數(shù)g(x)=
F(x)-6x2+6(a-1)x•ex,x≤1
e•f(x),                             x>1
(e是自然對(duì)數(shù)的底數(shù)),是否存在a使g(x)在[a,-a]上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(二)選擇題(考生在A、B、C三小題中選做一題,多做按所做第一題評(píng)分)
A.(不等式選講) 函數(shù)f(x)=
|x-2|-1
的定義域?yàn)?!--BA-->
(-∞,1]∪[3,+∞)
(-∞,1]∪[3,+∞)

B.(坐標(biāo)系與參數(shù)方程)已知極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為
x=
3
5
t
y=1+
4
5
t
(t為參數(shù)).則曲線C上的點(diǎn)到直線l的最短距離為
2
5
2
5

C.(幾何證明選講)如圖,PA是圓O的切線,切點(diǎn)為A,PA=2.AC是圓O的直徑,PC與圓O交于B,PB=1,則AC=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09 年聊城一模文)(12分)

    已知函數(shù)在區(qū)間[-1,1]上最大值為1,最小值為-2。

   (1)求的解析式;

   (2)若函數(shù)在區(qū)間[-2,2]上為減函數(shù),求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案