已知甲、乙、丙三人獨(dú)自射擊命中目標(biāo)的概率分別是、

(Ⅰ)若三人同時(shí)對(duì)同一目標(biāo)進(jìn)行射擊,求目標(biāo)被擊中的概率;

(Ⅱ)若由甲、乙、丙三人輪流對(duì)目標(biāo)進(jìn)行射擊(每人只有一發(fā)子彈),目標(biāo)被擊中則停止射擊。請(qǐng)問三人的射擊順序如何編排才最節(jié)省子彈?試用數(shù)學(xué)方法說明你的結(jié)論.

解:(1)設(shè)甲命中目標(biāo)為事件A,乙命中目標(biāo)為事件B,丙命中目標(biāo)為事件C

三人同時(shí)對(duì)同一目標(biāo)射擊,目標(biāo)被擊中為事件D,則目標(biāo)不被擊中為事件 

 

                                 

答:三人同時(shí)對(duì)同一目標(biāo)進(jìn)行射擊,目標(biāo)被擊中的概率為 

(2)甲、乙、丙由先而后進(jìn)行射擊時(shí)最省子彈。   …… 7分

分析:設(shè)所耗子彈數(shù)為,則的取值為1,2,3。

當(dāng)甲、乙、丙由先而后進(jìn)行射擊時(shí),

…… 9分

∴所用子彈的分布列為

1

2

3

…… 10分

由此可求出此時(shí)所耗子彈數(shù)量的期望為:   …… 11分

按其它順序編排進(jìn)行射擊時(shí),得出所耗子彈數(shù)量的期望值均高過此時(shí),

因此甲、乙、丙由先而后進(jìn)行射擊時(shí)最省子彈。        ……  12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知甲、乙、丙三人在3天節(jié)日中值班,每人值班1天,那么甲排在乙前面值班的概率是
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次圍棋擂臺(tái)賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨(dú)立的.
(1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
(2)若按甲、乙、丙順序攻擂,這次擂臺(tái)賽共進(jìn)行了x次比賽,求x得數(shù)學(xué)期望;
(3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場(chǎng),可使所需出場(chǎng)人員數(shù)的均值(數(shù)學(xué)期望)達(dá)到最小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一次圍棋擂臺(tái)賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨(dú)立的.
(1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
(2)若按甲、乙、丙順序攻擂,這次擂臺(tái)賽共進(jìn)行了x次比賽,求x得數(shù)學(xué)期望;
(3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場(chǎng),可使所需出場(chǎng)人員數(shù)的均值(數(shù)學(xué)期望)達(dá)到最小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省期末題 題型:解答題

一次圍棋擂臺(tái)賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨(dú)立的.
(1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
(2)若按甲、乙、丙順序攻擂,這次擂臺(tái)賽共進(jìn)行了x次比賽,求x得數(shù)學(xué)期望;
(3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場(chǎng),可使所需出場(chǎng)人員數(shù)的均值(數(shù)學(xué)期望)達(dá)到最小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案