(本小題滿分10分)
如圖,已知是的切線,為切點(diǎn),是的割線,與交于兩點(diǎn),圓心在的內(nèi)部,點(diǎn)是的中點(diǎn).
(1)證明四點(diǎn)共圓;
(2)求的大。
(1)連結(jié)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/52/e/8lvg32.png" style="vertical-align:middle;" />與相切于點(diǎn),所以.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/3/d1qqr1.png" style="vertical-align:middle;" />是的弦的中點(diǎn),所以.于是.四邊形的對(duì)角互補(bǔ),所以四點(diǎn)共圓(2)
解析試題分析:(1)證明:連結(jié).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/52/e/8lvg32.png" style="vertical-align:middle;" />與相切于點(diǎn),所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/3/d1qqr1.png" style="vertical-align:middle;" />是的弦的中點(diǎn),所以.
于是.
由圓心在的內(nèi)部,可知四邊形的對(duì)角互補(bǔ),所以四點(diǎn)共圓. ……………………5分
(2)解:由(1)得四點(diǎn)共圓,所以.
由(1)得.
由圓心在的內(nèi)部,可知.
所以. ……………………10分
考點(diǎn):平面幾何證明
點(diǎn)評(píng):證明四點(diǎn)共圓需證四邊形對(duì)角互補(bǔ)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知均在⊙O上,且為⊙O的直徑。
(Ⅰ)求的值;
(Ⅱ)若⊙O的半徑為,與交于點(diǎn),且、
為弧的三等分點(diǎn),求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點(diǎn)E,EF垂直BA的延長線于點(diǎn)F.
求證:(1);
(2)AB2=BE•BD-AE•AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,的外接圓的切線與的延長線交于點(diǎn),的平分線與交于點(diǎn)D.
(1)求證:
(2)若是的外接圓的直徑,且,=1.求長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
如圖,已知C、F是以AB為直徑的半圓上的兩點(diǎn),且CF=CB,過C作CD^AF交AF的延長線與點(diǎn)D.
(1)證明:CD為圓O的切線;
(2)若AD=3,AB=4,求AC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G。
(1)求證:圓心O在直線AD上;
(2)求證:點(diǎn)C是線段GD的中點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-1幾何證明選講
如圖,在中,,平分交于點(diǎn),點(diǎn)在上,.
(1)求證:是△的外接圓的切線;
(2)若,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為⊙O上一點(diǎn),A為弧CE的重點(diǎn),DE交AB于點(diǎn)F,且AB=2BP=4,求PF的長度。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com