若函數(shù)f(x)=lg(x+2x-m)在區(qū)間[1,2]上有意義,則實(shí)數(shù)m的取值范圍是( 。
分析:利用導(dǎo)數(shù)求得對(duì)數(shù)的真數(shù)t=x+2x-m在區(qū)間[1,2]上為增函數(shù),故當(dāng)x=1時(shí),t>0,由此求得m的范圍.
解答:解:令對(duì)數(shù)的真數(shù)t=x+2x-m,則它的導(dǎo)數(shù)為t′=1+2xln2,再由x∈[1,2],可得t′>0,
故函數(shù)t═x+2x-m在區(qū)間[1,2]上為增函數(shù),故函數(shù)f(x)=lg(x+2x-m)在區(qū)間[1,2]上是增函數(shù).
再由函數(shù)f(x)=lg(x+2x-m)在區(qū)間[1,2]上有意義,可得當(dāng)x=1時(shí),t>0,即 1+2-m>0,解得m<3,
故選A.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的定義域的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題;其中所有正確命題的序號(hào)是
①,②,③(多寫少寫均作0分)
①,②,③(多寫少寫均作0分)

①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=2-x(x>0)的反函數(shù)是y=-log2x(0<x<1);
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=0對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下四個(gè)命題:
①?x∈(0,+∞),x2>x3;
②?x∈(0,+∞),x>ex;
③函數(shù)f(x)定義域?yàn)镽,且f(2-x)=f(x),則f(x)的圖象關(guān)于直線x=1對(duì)稱;
④若函數(shù)f(x)=lg(x2+ax-a)的值域?yàn)镽,則a≤-4或a≥0;
其中正確的命題是
③④
③④
.(寫出所有正確命題的題號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知函數(shù)f(x)=(
1
2x-1
)•x2-sinx+a(a為常數(shù))
,且f(loga1000)=3,則f(lglg2)=3;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a∈(-4,0);
③關(guān)于x的方程(
1
2
)x=lga
有非負(fù)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(1,10);
④如圖,三棱柱ABC-A1B1C1中,E、F分別是AB,AC的中點(diǎn),平面EB1C1F將三棱柱分成幾何體AEF-AB1C1和B1C1-EFCB兩部分,其體積分別為V1,V2,則V1:V2=7:5.
其中正確命題的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=lg(mx2+mx+1)的定義域?yàn)镽,則m的取值范圍是
[0,4)
[0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=lg(ax2+x+1)在區(qū)間(-1,+∞)上為單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是
[0,
1
2
]
[0,
1
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案