【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按題目要求獨(dú)立完成.規(guī)定:至少正確完成其中2道題的便可通過(guò).已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學(xué)期望;

(2)請(qǐng)分析比較甲、乙兩人誰(shuí)面試通過(guò)的可能性大?

【答案】(1)詳見(jiàn)解析;(2)從做對(duì)題數(shù)的數(shù)學(xué)期望考查,兩人水平相當(dāng);從做對(duì)題數(shù)的方差考查,甲較穩(wěn)定;從至少完成2道題的概率考查,甲獲得面試通過(guò)的可能性大.

【解析】試題分析:(1)確定甲、乙兩人正確完成面試題數(shù)的取值,求出相應(yīng)的概率,即可得到分布列,并計(jì)算其數(shù)學(xué)期望;

(2)確定Dξ<Dη,即可比較甲、乙兩人誰(shuí)的面試通過(guò)的可能性大.

試題解析:

(1)設(shè)甲正確完成面試的題數(shù)為,則的取值分別為1,2,3

; ; ;

應(yīng)聘者甲正確完成題數(shù)的分布列為

1

2

3

設(shè)乙正確完成面試的題數(shù)為,則取值分別為0,1,2,3

應(yīng)聘者乙正確完成題數(shù)的分布列為:

0

1

2

3

.

(或∵

(2)因?yàn)?/span>

所以

綜上所述,從做對(duì)題數(shù)的數(shù)學(xué)期望考查,兩人水平相當(dāng);

從做對(duì)題數(shù)的方差考查,甲較穩(wěn)定;

從至少完成2道題的概率考查,甲獲得面試通過(guò)的可能性大

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若存在,使得,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;

2)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一建筑物的三視圖(單位: ),現(xiàn)需將其外壁用油漆粉刷一遍,已知每平方米用漆,問(wèn)需要油漆多少千克?(無(wú)需求近似值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究家用轎車(chē)在高速公路上的車(chē)速情況,交通部門(mén)對(duì)100名家用轎車(chē)駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車(chē)速情況為:在55名男性駕駛員中,平均車(chē)速超過(guò)100km/h的有40人,不超過(guò)100km/h的有15人.在45名女性駕駛員中,平均車(chē)速超過(guò)100km/h的有20人,不超過(guò)100km/h的有25人.

(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車(chē)速超過(guò)100km/h的人與性別有關(guān).

平均車(chē)速超過(guò)

100km/h人數(shù)

平均車(chē)速不超過(guò)

100km/h人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

(2)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車(chē)中隨機(jī)抽取3輛,記這3輛車(chē)中駕駛員為男性且車(chē)速超過(guò)100km/h的車(chē)輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.

參考公式與數(shù)據(jù): ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)上的有界函數(shù),其中稱(chēng)為函數(shù)的上界,已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由

(2)若函數(shù)上是以4為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點(diǎn).

(1)求的長(zhǎng);

(2)在以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中, 的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中, 的極坐標(biāo)方程.

)說(shuō)明是哪種曲線,并將的方程化為普通方程;

有兩個(gè)公共點(diǎn),頂點(diǎn)的極坐標(biāo),求線段的長(zhǎng)及定點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為 .

(1)化曲線的參數(shù)方程為普通方程,化曲線的極坐標(biāo)方程為直角坐標(biāo)方程;

(2)直線為參數(shù))過(guò)曲線軸負(fù)半軸的交點(diǎn),求與直線平行且與曲線相切的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案