【題目】(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動點,P點滿足,點P的軌跡為曲線.
(I)求的方程;
(II)在以O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
【答案】(1)的參數(shù)方程為(為參數(shù))(2)
【解析】
(I)本小題屬于相關(guān)點法求P點的軌跡方程.設(shè)P(x,y),則由條件知M().由于M點在C1上,可得到點P的軌跡方程.
(II)解本小題的關(guān)鍵是先確定的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.然后根據(jù)求值即可.
解:(I)設(shè)P(x,y),則由條件知M().由于M點在C1上,所以
即
從而的參數(shù)方程為(為參數(shù))……………… 5分
(Ⅱ)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.射線與的交點的極徑為,射線與的交點的極徑為.
所以.……………… 10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正三棱柱的三視圖如圖所示,若該三棱柱的外接球的表面積為,則側(cè)視圖中的的值為 ( )
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零數(shù)列滿足,.
(1)求證:數(shù)列是等比數(shù)列;
(2)若關(guān)于的不等式有解,求整數(shù)的最小值;
(3)在數(shù)列中,是否存在首項、第項、第項(),使得這三項依次構(gòu)成等差數(shù)列?若存在,求出所有的;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=a
(1)當(dāng)a=3時,解不等式(關(guān)于x的)f(x)g(x)+3.
(2)若f(x)g(x)-1 對于任意x都成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F(xiàn)為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線AP與橢圓在點B處的切線交于點D,當(dāng)點P在橢圓上運動時,求證:以BD為直徑的圓與直線PF恒相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗證這個結(jié)論,某興趣小組隨機抽取了100名魔方愛好者進(jìn)行調(diào)查,得到的部分?jǐn)?shù)據(jù)如表所示:已知在全部100人中隨機抽取1人抽到喜歡盲擰的概率為.
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 10 | ||
女 | 20 | ||
總計 | 100 |
表(1)
并邀請這100人中的喜歡盲擰的人參加盲擰三階魔方比賽,其完成時間的頻率分布如表所示:
完成時間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
頻率 | 0.2 | 0.4 | 0.3 | 0.1 |
表(2)
(Ⅰ)將表(1)補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?
(Ⅱ)現(xiàn)從表(2)中完成時間在[30,40] 內(nèi)的人中任意抽取2人對他們的盲擰情況進(jìn)行視頻記錄,記完成時間在[30,40]內(nèi)的甲、乙、丙3人中恰有一人被抽到為事件A,求事件A發(fā)生的概率.
(參考公式:,其中)
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x+3=0,過原點的直線l與圓C有公共點.
(1)求直線l斜率k的取值范圍;
(2)已知O為坐標(biāo)原點,點P為圓C上的任意一點,求線段OP的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:①若mα,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;③若α∩β=n,m∥n,則m∥α且m∥β;④若m⊥α,m⊥β,則α∥β.其中真命題的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com