(本小題滿分14分)
如圖6,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,EF⊥PB交PB于點F.
(Ⅰ) 若PD=DC=2求三棱錐A-BDE的體積;
(Ⅱ) 證明PA∥平面EDB;
(Ⅲ) 證明PB⊥平面EFD.
解:(Ⅰ)設CD的中點為H,連結EH,
依題意得EH//PD,且EH=PD=1,因為PD⊥底面ABCD,所以EH⊥底面ABCD,故三棱錐E-ABD的高是EH,其體積為
因為,所以三棱錐A-BDE的體積為.
(Ⅱ)證明:連結AC,AC交BD于O,連EO,∵底面 ABCD是正方形,∴點O是AC中點,在△PAC中,EO是中位線,∴PA∥EO,而EO平面EDB,且PA平面EDB,∴PA∥平面EDB.
(Ⅲ) 證明:∵PD⊥底面ABCD且DC底面ABCD,
∴PD⊥DC.
∵PD=DC可知△PDC是等腰直角三角形,而DE是斜邊PC的中線,
∴DE⊥PC.①
同樣由PD⊥底面ABCD,得PD⊥BC,
∵底面ABCD是正方形有DC⊥BC,
∴BC⊥平面PDC,而DE平面PDC,
∴BC⊥DE.②
由①②得DE⊥平面PBC,而PB面PBC,
∴DE⊥PB又EF⊥PB且DE∩EF=E,
∴PB⊥平面EFD.
【解析】略
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com