【題目】設(shè)函數(shù),為常數(shù)

1表示的最小值,求的解析式

21中,是否存在最小的整數(shù),使得對(duì)于任意均成立,若存在,求出的值;若不存在,請(qǐng)說明理由

【答案】1;2存在,的最小值為0.

【解析】

試題分析:1函數(shù)圖象為開口向上的拋物線,對(duì)稱軸方程為,下面分情況討論,當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),,當(dāng),即時(shí),函數(shù)在區(qū)間上先遞減,后遞增,所以當(dāng)時(shí),函數(shù),當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,所以當(dāng)時(shí),,所以函數(shù)的最小值2是否存在最小的整數(shù)使得對(duì)任意的均成立,實(shí)際為;經(jīng)分析可知,函數(shù)是增函數(shù),在是減函數(shù),所以,則,所以的最小值為0.

試題解析:1對(duì)稱軸,

當(dāng)時(shí),上是增函數(shù),當(dāng)時(shí)有最小值

當(dāng)時(shí),上是減函數(shù),時(shí)有最小值

當(dāng)時(shí),上是不單調(diào),時(shí)有最小值

2存在, 由題知是增函數(shù),在是減函數(shù)

時(shí),,

恒成立,

為整數(shù),的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級(jí)有50名學(xué)生,現(xiàn)要采取系統(tǒng)抽樣的方法在這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編為1~50號(hào),并進(jìn)行分組,第一組1~5號(hào),第二組6~10號(hào),…,第十組46~50號(hào).若在第三組中抽得號(hào)碼為12的學(xué)生,則在第九組中抽得號(hào)碼為_____的學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,分別是棱的中點(diǎn),且平面.

1)求證:平面;

2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將二進(jìn)制數(shù)10001(2)化為五進(jìn)制數(shù)為(  )

A32(5) B23(5)

C.21(5) D.12(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l交拋物線y2=2xA、B兩點(diǎn),且OAOB,則直線l過定點(diǎn)( 。

A. (1,0) B. (2,0) C. (3,0) D. (4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1當(dāng)時(shí),求函數(shù)的定義域;

2,請(qǐng)判定的奇偶性;

3是否存在實(shí)數(shù),使函數(shù)遞增,并且最大值為1,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成個(gè)等級(jí),等級(jí)系數(shù)依次,其中為標(biāo)準(zhǔn),為標(biāo)準(zhǔn).已知甲廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)元/件;乙廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).

(1)已知甲廠產(chǎn)品的等級(jí)系數(shù)的概率分布如下所示

的數(shù)學(xué)期望,求的值;

(2)為分析乙廠產(chǎn)品的等級(jí)系數(shù),從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:

用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻視為概,求等級(jí)系數(shù)的數(shù)學(xué)期望;

(3)(1)、(2)的條件下,若以性價(jià)比為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購買性?說明理由.注:產(chǎn)品的性價(jià);

性價(jià)大的產(chǎn)品更具可購性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在凸四邊形中,為定點(diǎn),,為動(dòng)點(diǎn),滿足.

1寫出的關(guān)系式;

2設(shè)BCD和ABD的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方

圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷”.

)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料,在犯錯(cuò)誤的概率不超過的前提下,你是否有理由認(rèn)為體育迷與性別有關(guān)?


非體育迷

體育迷

合計(jì)







10

55

合計(jì)




)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.

附:







查看答案和解析>>

同步練習(xí)冊(cè)答案