設(shè)函數(shù)
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若當(dāng)時恒成立,求實數(shù)的取值范圍。
(1)的單調(diào)遞增區(qū)間為,的單調(diào)遞減區(qū)間為;
(2)
解析試題分析:(1)將代入,求導(dǎo)即可 (2)注意恒大于等于0,故只需對任意恒成立即可 接下來就利用導(dǎo)數(shù)研究函數(shù)
試題解析:(1)當(dāng)時,
令,得或;令,得
的單調(diào)遞增區(qū)間為
的單調(diào)遞減區(qū)間為 6分
(2)因為對任意,設(shè)
當(dāng)時,對恒成立, 符合題意 9分
當(dāng)時,由得;由得;
所以在上是減函數(shù),在上是增函數(shù)
又,故不符合題意 12分
綜上所述的取值范圍是 13分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、不等關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)設(shè)(其中是的導(dǎo)函數(shù)),求的最大值;
(2)求證: 當(dāng)時,有;
(3)設(shè),當(dāng)時,不等式恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,),.
(Ⅰ)證明:當(dāng)時,對于任意不相等的兩個正實數(shù)、,均有成立;
(Ⅱ)記,若在上單調(diào)遞增,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,如果函數(shù)僅有一個零點(diǎn),求實數(shù)的取值范圍;
(2)當(dāng)時,試比較與1的大;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排水管,在路南側(cè)沿直線排水管(假設(shè)水管與公路的南,北側(cè)在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線EF將與接通.已知AB = 60m,BC = 60m,公路兩側(cè)排管費(fèi)用為每米1萬元,穿過公路的EF部分的排管費(fèi)用為每米2萬元,設(shè)EF與AB所成角為.矩形區(qū)域內(nèi)的排管費(fèi)用為W.
(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時,都取得極值.
(1)求的值;
(2)若,求的單調(diào)區(qū)間和極值;
(3)若對都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計),切點(diǎn)為M,并把該地塊分為兩部分.現(xiàn)以點(diǎn)O為坐標(biāo)原點(diǎn),以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿足函數(shù)的圖象,且點(diǎn)M到邊OA距離為.
(1)當(dāng)時,求直路所在的直線方程;
(2)當(dāng)為何值時,地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com