給出以下四個命題:
(1)對于任意的a>0,b>0,則有algb=blga成立;
(2)直線y=x•tanα+b的傾斜角等于α;
(3)在空間如果兩條直線與同一條直線垂直,那么這兩條直線平行;
(4)在平面將單位向量的起點移到同一個點,終點的軌跡是一個半徑為1的圓.
其中真命題的序號是______.
(1)中,∵a>0,b>0,若algb=blga,則lgalgb=lgblga,即lgb•lga=lga•lgb成立,∴命題正確;
(2)中,直線y=x•tanα+b的斜率是k=tanα,當α∈[0,π)且α≠
π
2
時,傾斜角等于α,否則,命題不成立;
(3)中,在空間如果兩條直線與同一條直線垂直,那么這兩條直線不一定平行,也可能異面或相交,∴命題不成立;
(4)中,∵單位向量的模長是1,∴在平面內將單位向量的起點移到同一個點,終點的軌跡是一個半徑為1的圓,命題正確;
∴正確的命題有(1)(4);
故答案為:(1)(4).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a>0,且.設命題:函數(shù)在(0,+∞)上單調遞減,命題:曲線與x軸交于不同的兩點,如果是假命題,是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列結論中正確的是(  )
A.若ac>bc,則a>bB.若a8>b8,則a>b
C.若a>b,c<0,則ac<bcD.若
a
b
,則a>b

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列判斷正確的是(  )
A.棱柱中只能有兩個面可以互相平行
B.底面是正方形的直四棱柱是正四棱柱
C.底面是正六邊形的棱臺是正六棱臺
D.底面是正方形的四棱錐是正四棱錐

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設a,b,k是實數(shù),二次函數(shù)f(x)=x2+ax+b滿足:f(k-1)與f(k)異號,f(k+1)與f(k)異號.在以下關于f(x)的零點的命題中,真命題是(  )
A.該二次函數(shù)的零點都小于k
B.該二次函數(shù)的零點都大于k
C.該二次函數(shù)的兩個零點之差一定大于2
D.該二次函數(shù)的零點均在區(qū)間(k-1,k+1)內

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若a,b,c為三條不同的直線,a⊆平面M,b⊆平面N,M∩N=c.
①若a,b是異面直線,則c至少與a,b中的一條相交;
②若a不垂直于c,則a與b一定不垂直;
③若ab,則必有ac;
④若a⊥b,a⊥c,則必有M⊥N.
其中正確的命題個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法正確的是 (     )
A.“”是“上為增函數(shù)”的充要條件[]
B.命題“使得”的否定是:“
C.“”是“”的必要不充分條件
D.命題p:“”,則p是真命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

命題“若,則”的否定是(   )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題p:方程2x2+ax-a2=0在[-1,1]上有解;命題q:只有一個實數(shù)x0滿足不等式x02+2ax0+2a≤0,若命題“p∨q”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案