【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+6﹣2m=0(m∈R).
(1)求該方程表示一條直線的條件;
(2)當(dāng)m為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;
(3)已知方程表示的直線l在x軸上的截距為﹣3,求實(shí)數(shù)m的值;
(4)若方程表示的直線l的傾斜角是45°,求實(shí)數(shù)m的值.
【答案】
(1)解:當(dāng)x,y的系數(shù)不同時(shí)為零時(shí),方程表示一條直線,
令m2﹣2m﹣3=0,解得m=﹣1,m=3;
令2m2+m﹣1=0,解得m=﹣1,m= .
∴方程表示一條直線的條件是:m∈R,且m≠﹣1
(2)解:由(1)易知,當(dāng)m= 時(shí),方程表示的直線的斜率不存在,
此時(shí)的方程為:x= ,它表示一條垂直于x軸的直線
(3)解:依題意,有 =﹣3,
∴3m2﹣4m﹣15=0,
∴m=3或m=﹣ ,由(1)易知,所求m=﹣
(4)解:∵直線l的傾斜角是45°,
∴其斜率為1,
∴﹣ =1,解得m= 或m=﹣1(舍去).
∴直線l的傾斜角是45°時(shí),m=
【解析】(1)當(dāng)x,y的系數(shù)不同時(shí)為零時(shí)即可(2)由2m2+m﹣1=0,再結(jié)合(1)可求得m的值,從而可求得這時(shí)的直線方程;(3)利用 =﹣3,再結(jié)合(1)可求得m的值;(4)依題意,可求得直線l的斜率,從而可求得實(shí)數(shù)m的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一般式方程(直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ln ,則f(x)是( )
A.奇函數(shù),且在(0,+∞)上單調(diào)遞減
B.奇函數(shù),且在(0,+∞)上單凋遞增
C.偶函數(shù),且在(0,+∞)上單調(diào)遞減
D.偶函數(shù),且在(0,+∞)上單凋遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內(nèi),當(dāng)x= 時(shí),f(x)取得最大值3,當(dāng)x=﹣ 時(shí),f(x)取得最小值﹣3. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E為棱CC1上的動(dòng)點(diǎn).
(1)若E為棱CC1的中點(diǎn),求證:A1E⊥平面BDE;
(2)試確定E點(diǎn)的位置使直線A1C與平面BDE所成角的正弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 + =1(a>b>0)右頂點(diǎn)與右焦點(diǎn)的距離為 ﹣1,短軸長為2 . (Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),若三角形OAB的面積為 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C中心在原點(diǎn),離心率 ,其右焦點(diǎn)是圓E:(x﹣1)2+y2=1的圓心.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,過橢圓C上且位于y軸左側(cè)的一點(diǎn)P作圓E的兩條切線,分別交y軸于點(diǎn)M、N.試推斷是否存在點(diǎn)P,使 ?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比數(shù)列,公比不為1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間四邊形ABCD中,E,F(xiàn),G分別是AB,BC,CD的中點(diǎn),
(1)求證:BD∥平面EFG;
(2)若AD=CD,AB=CB,求證:AC⊥BD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com