(1)已知0<α<
π
2
<β<π
,cosα=
3
5
,sin(α+β)=
5
13
,求sinα和cosβ的值.
(2)已知sinx+cosx=
1
5
,x∈(0,π),求tanx的值.
(1)∵0<α<
π
2
,cosα=
3
5
,
∴sinα=
1-cos2α
=
4
5
,
∵sin(α+β)=
5
13
,∴
π
2
<α+β<π,
∴cos(α+β)=-
12
13
,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-
12
13
×
3
5
+
5
13
×
4
5
=-
16
65

(2)由sinx+cosx=
1
5
,得到(sinx+cosx)2=1+2sinxcosx=
1
25
,
∴2sinxcosx=-
24
25
,又x∈(0,π),
∴sinx>0,cosx<0,
∴sinx-cosx=
1-2sinxcosx
=
7
5
,
∴sinx=
4
5
,cosx=-
3
5
,
則tanx=-
4
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且an+1=f′(
1
an-n+1
)-n2+1
,已知a1=4,求證:an≥2n+2;
(3)在(2)的條件下,試比較
1
1+a1
+
1
1+a2
+
1
1+a3
+…+
1
1+an
2
5
的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知0<α<
π
2
<β<π
,cosα=
3
5
,sin(α+β)=
5
13
,求sinα和cosβ的值.
(2)已知sinx+cosx=
1
5
,x∈(0,π),求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知0<α<
π
4
,β為f(x)=cos(2x+
π
8
)的最小正周期,
a
=(tan(α+
1
4
β),-1),
b
=(cosα,2),且
a
b
=3.求
cos2α+sin2(α+β)
cosα-sinα
的值.  
(2)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
AM
=
c
、
AN
=
d
,試用
c
、
d
表示
AB
AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知0<x<,求x(4-3x)的最大值;

(2)點(diǎn)(x,y)在直線x+2y=3上移動(dòng),求2x+4y的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案