【題目】甲、乙、丙、丁四名同學(xué)組成一個(gè)4100米接力隊(duì),老師要安排他們四人的出場(chǎng)順序,以下是他們四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙簦揖筒慌艿谝话.老師聽(tīng)了他們四人的對(duì)話(huà),安排了一種合理的出場(chǎng)順序,滿(mǎn)足了他們的所有要求,據(jù)此我們可以斷定在老師安排的出場(chǎng)順序中跑第三棒的人是_________.

【答案】

【解析】

由題意知乙、丙均不跑第一棒和第四棒,則跑第三棒的人只能是乙、丙中的一個(gè),討論兩種情況,驗(yàn)證是否符合要求即可.

由題意知乙、丙均不跑第一棒和第四棒,則跑第三棒的人只能是乙、丙中的一個(gè),

當(dāng)丙跑第三棒時(shí),乙只能跑第二棒,這時(shí)丁是第一棒,甲是第四捧,符合題意,

當(dāng)乙跑第三棒時(shí),丙只能跑第二棒,丁只能跑第四棒,甲跑第一捧,不符合題意,

故跑第三棒的人是丙,故答案為丙.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:

①函數(shù)的最大值為1;

“若,則”的逆命題為真命題;

③若為銳角三角形,則有;

④“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.

其中所有正確命題的序號(hào)為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù)(.

1)求實(shí)數(shù)的值;

2)試判斷函數(shù)上的單調(diào)性,并證明你的結(jié)論;

3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線(xiàn)上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線(xiàn)焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某音樂(lè)院校舉行“校園之星”評(píng)選活動(dòng),評(píng)委由本校全體學(xué)生組成,對(duì)兩位選手,隨機(jī)調(diào)查了個(gè)學(xué)生的評(píng)分,得到下面的莖葉圖:

通過(guò)莖葉圖比較兩位選手所得分?jǐn)?shù)的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);

校方將會(huì)根據(jù)評(píng)分記過(guò)對(duì)參賽選手進(jìn)行三向分流:

所得分?jǐn)?shù)

低于

分到

不低于

分流方向

淘汰出局

復(fù)賽待選

直接晉級(jí)

記事件獲得的分流等級(jí)高于”,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線(xiàn)段AB=8,點(diǎn)C在線(xiàn)段AB上,且AC=2,P為線(xiàn)段CB上一動(dòng)點(diǎn),點(diǎn)A繞著C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,CPD的面積為f(x).求f(x)的最大值(  ).

A.     B. 2

C.3     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,且時(shí)有極大值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案