【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付又稱手機支付逐漸深入人民群眾的生活某學(xué)校興趣小組為了了解移動支付在人民群眾中的熟知度,對歲的人群隨機抽樣調(diào)查,調(diào)查的問題是你會使用移動支付嗎?其中,回答的共有50個人,把這50個人按照年齡分成5組,并繪制出頻率分布表部分?jǐn)?shù)據(jù)模糊不清如表:

分組

頻數(shù)

頻率

1

10

2

3

15

4

5

2

合計

50

表中處的數(shù)據(jù)分別是多少?

從第1組,第3組,第4組中用分層抽樣的方法抽取6人,求每組抽取的人數(shù).

抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

【答案】(1)見解析;(2)見解析;(3)

【解析】

由頻率分布表能求出表中處的數(shù)據(jù).
從第1組,第3組,第4組中用分層抽樣的方法抽取6人,由第1組,第3組,第4組的人數(shù)之比為101531,能求出結(jié)果.
設(shè)從第1組抽取的2人為,,從第3組抽取的3人為,,從第4組抽取的1人為C,從這6人中隨機抽取2人,利用列舉法能求出所抽取的2人來自同一個組的概率.

由頻率分布表得:

處的數(shù)據(jù)是1,處的數(shù)據(jù)是:

處的數(shù)據(jù)是:,

處的數(shù)據(jù)是:

處的數(shù)據(jù)是:

1組,第3組,第4組的人數(shù)之比為:

10:15::3:1,

從第1組抽取的人數(shù)為:人,

從第3組抽取的人數(shù)為:人,

從第4組抽取的人數(shù)為:人.

設(shè)從第1組抽取的2人為,從第3組抽取的3人為,,,從第4組抽取的1人為C,

則從這6人中隨機抽取2人,基本事件有15個,分別為:

,,,,,

,,,,

所抽取的2人來自同一個組包含的基本事件有4個,分別為:

,,,

所抽取的2人來自同一個組的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球個.若從袋子中隨機抽取1個小球,取到標(biāo)號為2的小球的概率是.

(1)求的值;

(2)從袋子中有放回地隨機抽取2個小球,記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.

①記“”為事件,求事件的概率;

②在區(qū)間內(nèi)任取2個實數(shù),求事件“恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:

f1x=min{ft| a≤t≤x}x∈[a,b]),

f2x=max{ft| a≤t≤x}x∈[a,b])。

其中,min{f(x)| x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值。若存在最小正整數(shù)k,使得f2x-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”。

(1)若f(x)=sinx,x[, ],請直接寫出f1x),f2(x)的表達(dá)式;

(2)已知函數(shù)f(x)=(x-1)2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對應(yīng)的k;如果不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗.

(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: ,

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高級中學(xué)在今年五一期間給校內(nèi)所有教室安裝了同一型號的空調(diào),關(guān)于這批空調(diào)的使用年限單位:年和所支出的維護(hù)費用單位:千元廠家提供的統(tǒng)計資料如表:

x

2

4

5

6

8

y

30

40

60

50

70

xy之間是線性相關(guān)關(guān)系,請求出維護(hù)費用y關(guān)于x的線性回歸直線方程;

若規(guī)定當(dāng)維護(hù)費用y超過千元時,該批空調(diào)必須報度,試根據(jù)的結(jié)論求該批空調(diào)使用年限的最大值結(jié)果取整數(shù)參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 圖象上有且僅有四個不同的點關(guān)于直線y=e的對稱點在函數(shù)g(x)=kx+2e+1的圖象上,則實數(shù)k的取值范圍為(
A.(1,2)
B.(﹣1,0)
C.(﹣2,﹣1)
D.(﹣6,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點,,圓C的方程為,點P為圓上的動點.

求過點A的圓C的切線方程.

的最大值及此時對應(yīng)的點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在非零實數(shù)集上的函數(shù)滿足,且是區(qū)間上的遞增函數(shù).

1)求的值;

2)求證: ;

3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的菱形, 平面, , 是棱上的一個點, , 的中點.

(1)證明: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案