【題目】某次有600人參加的數(shù)學(xué)測試,其成績的頻數(shù)分布表如圖所示,規(guī)定85分及其以上為優(yōu)秀.

區(qū)間

[75,80)

[80,85)

[85,90)

[90,95)

[95,100]

人數(shù)

36

114

244

156

50

(Ⅰ)現(xiàn)用分層抽樣的方法從這600人中抽取20人進行成績分析,求其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù);

(Ⅱ)在(Ⅰ)中抽取的20名學(xué)生中,要隨機選取2名學(xué)生參加活動,記“其中成績?yōu)閮?yōu)秀的人數(shù)”為,求的分布列與數(shù)學(xué)期望.

【答案】(Ⅰ).(Ⅱ)見解析.

【解析】試題分析:(Ⅰ)設(shè)其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù)為,根據(jù)40人中優(yōu)秀的比例等于600人中優(yōu)秀的比例,建立等式,解之即可;
(Ⅱ)的取值為0,12,然后利用超幾何分布求出相應(yīng)的概率,最后利用數(shù)學(xué)期望公式解之即可.

試題解析:(Ⅰ)設(shè)其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù)為,則,解得.

所以其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù)為.

(Ⅱ)依題意,隨機變量的所有取值為, .

, .

所以的分布列為

所以隨機變量的數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點,且.

(1)求的解析式;

設(shè)數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中, ,上底,下底為下底的中點,現(xiàn)將該梯形中的三角形沿線段折起,形成四棱錐.

(1)在四棱錐中,求證: ;

(2)若平面與平面所成二面角的平面角為求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)

(1)能否由的把握認為參加書法社團和參加演講社團有關(guān)?

(附:

當(dāng)時,有的把握說事件有關(guān);當(dāng),認為事件是無關(guān)的)

(2)已知既參加書法社團又參加演講社團的名同學(xué)中,有名男同學(xué), 名女同學(xué).現(xiàn)從這名男同學(xué)和名女同學(xué)中選人參加綜合素質(zhì)大賽,求被選中的男生人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標(biāo)方程;

(2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在空間直角坐標(biāo)系正四面體(各條棱均相等的三棱錐)的頂點分別在, , 軸上.

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下:

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

20

40

20

10

10

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

20

20

40

10

將上表中的頻率視為概率,回答下列問題:

(1)現(xiàn)從甲公司隨機抽取3名送餐員,求恰有2名送餐員送餐單數(shù)超過40的概率;

(2)(i)記乙公司送餐員日工資為X(單位:元),求X的數(shù)學(xué)期望;

(ii)某人擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日平均工資的角度考慮,他應(yīng)該選擇去哪家公司應(yīng)聘,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1 (t為參數(shù),t≠0),其中0≤απ.在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2ρ2sin θC3ρ2cos θ.

(1)C2C3交點的直角坐標(biāo);

(2)C1C2相交于點A,C1C3相交于點B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點處的切線方程;

2)求的單調(diào)區(qū)間;

3)若對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案