設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
,則f(2k)變形到f(2k+1)需增添項(xiàng)數(shù)為( 。
分析:根據(jù)f(n)=1+
1
2
+
1
3
+…+
1
n
,可得f(2k)變形到f(2k+1)需增添項(xiàng)數(shù)為2k+1-2k=2k,故可得結(jié)論.
解答:解:∵f(n)=1+
1
2
+
1
3
+…+
1
n

f(2k)=1+
1
2
+
1
3
+…+
1
2k
,f(2k+1)=1+
1
2
+
1
3
+…+
1
2k
+
1
2k+1
+…
1
2k+1

∴f(2k)變形到f(2k+1)需增添項(xiàng)數(shù)為2k+1-2k=2k
故選B.
點(diǎn)評(píng):本題考查數(shù)學(xué)歸納法,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
,是否存在g(n),使等式f(1)+f(2)+…+f(n-1)=g(n)f(n)-1
對(duì)n≥2的一切自然數(shù)都成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
, g(n)=lnn  (n∈N*)

(1)設(shè)an=f(n)-g(n),求a1,a2,a3,并證明{an}為遞減數(shù)列;
(2)是否存在常數(shù)c,使f(n)-g(n)>c對(duì)n∈N*恒成立?若存在,試找出c的一個(gè)值,并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=1+
1
2
+
1
3
+
1
4
+…+
1
2n
,則f(k+1)-f(k)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
,那么f(2k+1)-f(2k)=
1
2k+1
+
1
2k+2
+…+
1
2k+1
1
2k+1
+
1
2k+2
+…+
1
2k+1

查看答案和解析>>

同步練習(xí)冊(cè)答案