已知函數(shù)滿足(其中為在點處的導數(shù),為常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù),若函數(shù)在上單調(diào),求實數(shù)的取值范圍.
(1)詳見解析;(2) c ³11或c £ –
解析試題分析:(1)將的值代入的解析式,列出的變化情況表,根據(jù)表求出函數(shù)的單調(diào)區(qū)間.
(2)求出函數(shù)的導數(shù),構(gòu)造函數(shù),分函數(shù)遞增和遞減兩類,令和在上恒成立,求出C的范圍.
試題解析:(1)由,得.
取,得,
解之,得,
因為.
從而,列表如下:1 + 0 - 0 + ↗ 有極大值 ↘ 有極小值 ↗
∴的單調(diào)遞增區(qū)間是和;
的單調(diào)遞減區(qū)間是.
(3)函數(shù),
有=(–x2– 3 x+C–1)ex,
當函數(shù)在區(qū)間上為單調(diào)遞增時,等價于h(x)= –x2– 3 x+C–1³0在上恒成立, 只要h(2)³0,解得c ³11,
當函數(shù)在區(qū)間上為單調(diào)遞減時,等價于h(x)= –x2– 3 x+C–1£0在上恒成立, 即=,解得c
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ln x-.
(1)當a>0時,判斷f(x)在定義域上的單調(diào)性;
(2)f(x)在[1,e]上的最小值為,求實數(shù)a的值;
(3)試求實數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)f(x)=ex-ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當x>0時,(x-k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求f(x)的反函數(shù)的圖象上圖象上,點(1,0)處的切線方程;
(2)證明: 曲線y =" f" (x)與曲線有唯一公共點.
(3)設(shè)a<b, 比較與的大小, 并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中.
(1) 當時,求曲線在點處的切線方程;
(2) 求函數(shù)的單調(diào)區(qū)間及在上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某風景區(qū)在一個直徑AB為100米的半圓形花園中設(shè)計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設(shè)計為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點C到點B設(shè)計為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(shè)(弧度),將綠化帶總長度表示為的函數(shù);
(2)試確定的值,使得綠化帶總長度最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com