過點
作曲線
:
的切線,切點為
,設(shè)
在
軸上的投影是點
,過點
再作曲線
的切線,切點為
,設(shè)
在
軸上的投影是點
,…,依次下去,得到第
個切點
.則點
的坐標為
.
試題分析:根據(jù)題意,由于過點
作曲線
:
的切線,切點為
,設(shè)
在
軸上的投影是點
,過點
再作曲線
的切線,由于
,y-
=
(x-t),將(-1,0)代入,t=0,過點
再作曲線
的切線,切點為
(1,
),設(shè)
在
軸上的投影是點
,…,依次下去,得到第
個切點
,則點
的坐標為
。
點評:主要是考查了導(dǎo)數(shù)在研究曲線的切線中的運用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是橢圓
的右焦點,圓
與
軸交于
兩點,
是橢圓
與圓
的一個交點,且
(Ⅰ)求橢圓
的離心率;
(Ⅱ)過點
與圓
相切的直線
與
的另一交點為
,且
的面積為
,求橢圓
的方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
(a>b>0)拋物線
,從每條曲線上取兩個點,將其坐標記錄于下表中:
(1)求
的標準方程;
(2)四邊形ABCD的頂點在橢圓
上,且對角線AC、BD過原點O,若
,
(i) 求
的最值.
(ii) 求四邊形ABCD的面積;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標系中,動點
到兩條坐標軸的距離之和等于它到點
的距離,記點
的軌跡為曲線
.
(I) 給出下列三個結(jié)論:
①曲線
關(guān)于原點對稱;
②曲線
關(guān)于直線
對稱;
③曲線
與
軸非負半軸,
軸非負半軸圍成的封閉圖形的面積小于
;
其中,所有正確結(jié)論的序號是_____;
(Ⅱ)曲線
上的點到原點距離的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
的離心率為
,雙曲線
的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
的左焦點為
,點
為雙曲線右支上一點,且
與圓
相切于點
,
為線段
的中點,
為坐標原點, 則
=
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知拋物線
的準線過雙曲線
的一個焦點, 且雙曲線的離心率為2, 則該雙曲線的方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若拋物線
的焦點坐標為
,則
____;準線方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是橢圓
:
的左右焦點,
為直線
上一點,
是底角為30°的等腰三角形,則
的離心率為( )
查看答案和解析>>