【題目】已知點是拋物線的焦點,點是拋物線上的定點,且.

求拋物線的方程;

直線與拋物線交于不同兩點,,直線AB與切線l平行,設切點為N點,試問的面積是否是定值,若是,求出這個定值;若不是,請說明理由.

【答案】(1)(2)見解析

【解析】

1)設出點MF的坐標,根據(jù)向量坐標化得到,進而得到點M的坐標,代入拋物線可得到方程;(2的中點為,聯(lián)立直線AB和拋物線方程,得到,聯(lián)立切線和拋物線得到切點的坐標為,,進而得到軸,,結合得到,.

,由題知,

所以

所以

代入中得,解得

所以拋物線的方程為

有題意知,直線的斜率存在,設其方程為

消去,整理得

的中點為,

則點的坐標為

由條件設切線方程為

消去,整理得

直線與拋物線相切,

.

切點的坐標為,

軸,

的面積為定值,且定值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:的焦點為F1(–1、0),

F21,0).過F2x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結AF1并延長交圓F2于點B,連結BF2交橢圓C于點E,連結DF1.已知DF1=

1)求橢圓C的標準方程;

2)求點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓心在軸上,半徑為2的圓位于軸右側,且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標及對應的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為F,圓,點為拋物線上一動點.已知當的面積為.

(I)求拋物線方程;

(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值,并求出此時P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量單位:萬只與相應年份序號的數(shù)據(jù)表和散點圖如圖所示,根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)單位:個關于x的回歸方程

年份序號x

1

2

3

4

5

6

7

8

9

年養(yǎng)殖山羊萬只

根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關于x的線性回歸方程參考統(tǒng)計量:;

試估計:該縣第一年養(yǎng)殖山羊多少萬只

到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C:x2=6y與直線l:y=kx+3交于M,N兩點.

(1)設M,N到y(tǒng)軸的距離分別為d1,d2,證明:d1d2為定值.

(2)y軸上是否存在點P,使得當k變動時,總有∠OPM=∠OPN?若存在,求以線段OP為直徑的圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,則的長為( )

A. B.  C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別為的三內角A,B,C的對邊,其面積,在等差數(shù)列中,,公差.數(shù)列的前n項和為,且

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前n項和

查看答案和解析>>

同步練習冊答案