【題目】函數(shù)y=f(x)滿足:
①y=f(x+1)是偶函數(shù);
②在[1,+∞)上為增函數(shù).
則f(﹣1)與f(2)的大小關(guān)系是( )
A.f(﹣1)>f(2)
B.f(﹣1)<f(2)
C.f(﹣1)=f(2)
D.無法確定
【答案】A
【解析】解:①y=f(x+1)是偶函數(shù),即有f(1﹣x)=f(1+x),
函數(shù)f(x)關(guān)于直線x=1對稱,
則f(﹣1)=f(3),
②在[1,+∞)上為增函數(shù),
則f(3)>f(2),
即有f(﹣1)>f(2),
故選A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較,以及對函數(shù)單調(diào)性的性質(zhì)的理解,了解函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間中,設(shè)l,m為兩條不同直線,α,β為兩個不同的平面,則下列命題正確的有(填上正確的編號)
①若lα,m不平行于l,則m不平行于α;
②若lα,mβ,且α,β不平行,則l,m不平行;
③若lα,m不垂直于l,則m不垂直于α;
④若lα,mβ,l不垂直于m,則α,β不垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m是直線,α,β是兩個互相垂直的平面,則“m∥α”是“m⊥β”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是R上的偶函數(shù),且在(0,+∞)上為增函數(shù),若x1>0,且x1+x2<0,則( )
A.f(x1)>f(x2)
B.f(x1)<f(x2)
C.f(x1)=f(x2)
D.無法比較f(x1)與f(x2)的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是(﹣∞,+∞)上的增函數(shù),a為實(shí)數(shù),則有( )
A.f(a)<f(2a)
B.f(a2)<f(a)
C.f(a2+a)<f(a)
D.f(a2+1)>f(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=3x與y=3﹣x的圖象關(guān)于下列那種圖形對稱( )
A.x軸
B.y軸
C.直線y=x
D.原點(diǎn)中心對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={1,2,3,4},集合A={1,2},B={2,4},則U(A∪B)=( )
A.{1,3,4}
B.{3,4}
C.{3}
D.{4}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com