已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,左、右焦點分別為F1、F2,點P的坐標為(2,
3
),且F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果圓E:(x-
1
2
2+y2=r2被橢圓C所覆蓋,求圓的半徑r的最大值.
分析:(1)由橢圓C的離心率e=
2
2
和點F2在線段PF1的中垂線上知|F1F2|=|PF2|,由此推出(2c)2=(
3
)2+(2-c)2
,從而可求出橢圓C的方程.
(2)設P(x0,y0)是橢圓C上任意一點,則
x
2
0
2
+
y
2
0
=1
,|PE|=
(
x
 
0
-
1
2
)
2
+
y
2
0
,由此可求出圓的半徑r的最大值.
解答:解:(1)橢圓C的離心率e=
2
2
,得
c
a
=
2
2
,
其中c=
a2-b2
,橢圓C的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),又點F2在線段PF1的中垂線上,
∴|F1F2|=|PF2|,∴(2c)2=(
3
)2+(2-c)2
,
解得c=1,a2=2,b2=1,
∴橢圓C的方程為
x2
2
+y2=1

(2)設P(x0,y0)是橢圓C上任意一點,
x
2
0
2
+
y
2
0
=1
,|PE|=
(
x
 
0
-
1
2
)
2
+
y
2
0
,∵
y
2
0
=1-
x
2
0
2
,
|PE|=
(
x
 
0
-
1
2
)
2
+1-
x
2
0
2
=
1
2
x
2
0
-
x
 
0
+
5
4
-
2
x
 
0
2
).
當x0=1時,|PE|min=
1
2
-1+
5
4
=
3
2
,
∴半徑r的最大值為
3
2
點評:本題綜合考查橢圓的性質(zhì)和圓的知識,解題時要仔細審題,認真計算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案