已知函數(shù)f(x)=ln(1+x)-.
(1)求f(x)的極小值; (2)若a、b>0,求證:lna-lnb≥1-.
(1) 0. (2) f(x)≥f(0)=0,從而ln(1+x)≥在x>-1時恒成立.令1+x=>0,則=1-=1-,于是lna-lnb=ln≥1-,即lna-lnb≥1-在a>0,b>0時成立.
解析試題分析:(1) f(x)=ln(1+x)-,求導(dǎo)數(shù)得
f′(x)=,而f(x)的定義域x>-1,在x>0時,f′(x)>0;在-1<x<0時,f′(x)<0.
∴在x=0時,f(x)取得極小值f(0)=0. 6分
(2)證明:在x=0時,f(x)取得極小值,而且是最小值,于是f(x)≥f(0)=0,從而ln(1+x)≥在x>-1時恒成立.
令1+x=>0,則=1-=1-,
于是lna-lnb=ln≥1-,
因此lna-lnb≥1-在a>0,b>0時成立. 12分
考點:本題考查了導(dǎo)數(shù)的運用
點評:導(dǎo)數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(1)求實數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)在上的最小值;
(2)若函數(shù)與的圖像恰有一個公共點,求實數(shù)a的值;
(3)若函數(shù)有兩個不同的極值點,且,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),R.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存
在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com