(本小題滿分13分)
已知過橢圓C:=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數(shù)圖象的一條對稱軸的方程是.
(1)求橢圓C的離心率e與直線AB的方程;
(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式+成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線兩點.證明:以線段為直徑的圓恒過軸上的定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1,F(xiàn)2是的左、右焦點,點P在橢圓上運動,則的最大值是
A.4B.5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分13分)
已知橢圓的焦點為,, 
離心率為,直線軸,軸分別交于點,
(Ⅰ)若點是橢圓的一個頂點,求橢圓的方程;
(Ⅱ)若線段上存在點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別為橢圓的左、右焦點,過的直
與橢圓 相交于,兩點,直線的傾斜角為,到直線的距離為
(1)求橢圓的焦距;
(2)如果,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的方向向量為,若直線與橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F(c,0)為橢圓的右焦點,橢圓上的點與點F的距
離的最大值為M,最小值為m,則橢圓上與F點的距離是的點是
A.(B.(0,C.(D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知分別是橢圓的左、右焦點,點B是其上頂點,橢圓的右準(zhǔn)線與軸交于點N,且。
(1)求橢圓方程;
(2)直線與橢圓交于不同的兩點M、Q,若△BMQ是以MQ為底邊的等腰三角形,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓E:(a>b>0)的離心率e=,左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上
(1)求橢圓E的方程;
(2)設(shè)l1,l2是過點G(,0)且互相垂直的兩條直線,l1交E于A,B兩點,l2交E于C,D兩點,求l1的斜率k的取值范圍;
(3)在(2)的條件下,設(shè)AB,CD的中點分別為M,N,試問直線MN是否恒過定點?
若經(jīng)過,求出該定點坐標(biāo);若不經(jīng)過,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案