【題目】在5件產品中,有3件一等品和2件二等品,從中任取2件,那么以 為概率的事件是(
A.都不是一等品
B.恰有一件一等品
C.至少有一件一等品
D.至多一件一等品

【答案】D
【解析】解:5件產品中,有3件一等品和2件二等品,從中任取2件, 從5件產品中任取2件,有C52=10種結果,
∵都不是一等品有1種結果,概率是
恰有一件一等品有C31C21種結果,概率是
至少有一件一等品有C31C21+C32種結果,概率是
至多有一件一等品有C31C21+1種結果,概率是
是至多有一件一等品的概率,
故選D.
從5件產品中任取2件,有C52種結果,通過所給的條件可以做出都不是一等品有1種結果,恰有一件一等品有C31C21種結果,至少有一件一等品有C31C21+C32種結果,至多有一件一等品有C31C21+1種結果,做比值得到概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設x>0,求證:1+xx2+…+xn≥(2n+1)xn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=3x2﹣2x,數(shù)列{an}的前n項和為Sn , 點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,Tn是數(shù)列{bn}的前n項和,求使得Tn 對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若a=0時,求函數(shù)y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記定義在R上的函數(shù)y=f(x)的導函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)﹣f(a)=f′(x0)(b﹣a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點”.那么函數(shù)f(x)=x3﹣3x在區(qū)間[﹣2,2]上的“中值點”為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣f'(0)ex+2x,點P為曲線y=f(x)在點(0,f(0))處的切線l上的一點,點Q在曲線y=ex上,則|PQ|的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游公司為甲,乙兩個旅游團提供四條不同的旅游線路,每個旅游團可任選其中一條旅游線路.
(1)求甲、乙兩個旅游團所選旅游線路不同的概率;
(2)某天上午9時至10時,甲,乙兩個旅游團都到同一個著名景點游覽,20分鐘后游覽結束即離去.求兩個旅游團在該著名景點相遇的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2+Dx+Ey+3=0,圓心在直線x+y﹣1=0上,且圓心在第二象限,半徑長為 ,求圓的一般方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內角A,B,C所對應的邊分別為a,b,c,且滿足asinB= bcosA.
(1)求A的大小;
(2)若a=7,b=5,求△ABC的面積.

查看答案和解析>>

同步練習冊答案