如圖,在四邊形中,,,點(diǎn)為線段上的一點(diǎn).現(xiàn)將沿線段翻折到(點(diǎn)與點(diǎn)重合),使得平面平面,連接,.
(Ⅰ)證明:平面;
(Ⅱ)若,且點(diǎn)為線段的中點(diǎn),求二面角的大小.
(Ⅰ)連接,交于點(diǎn),在四邊形中,
證得,推出,從而,得到平面。
(Ⅱ)二面角的大小為.
解析試題分析:(Ⅰ)連接,交于點(diǎn),在四邊形中,
∵,
∴,∴,
∴
又∵平面平面,且平面平面=
∴平面 ……… 6分
(Ⅱ)如圖,以為原點(diǎn),直線,分別為軸,軸,平面內(nèi)過且垂直于直線的直線為軸建立空間直角坐標(biāo)系,可設(shè)點(diǎn)
又,,,,且由,有
,解得,∴ 8分
則有,設(shè)平面的法向量為,
由,即,故可取 10分
又易取得平面的法向量為,并設(shè)二面角的大小為,
∴,∴
∴二面角的大小為. 12分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計算。
點(diǎn)評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計算。證明過程中,往往需要將立體幾何問題轉(zhuǎn)化成平面幾何問題加以解答。本題解答,通過建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算,簡化了繁瑣的證明過程,實現(xiàn)了“以算代證”,對計算能力要求較高。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點(diǎn).
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點(diǎn),求CP+PB1的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,底面△為正三角形的直三棱柱中,,,是的中點(diǎn),點(diǎn)在平面內(nèi),.
(Ⅰ)求證:;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱的底面邊長是,體積是,分別是棱、的中點(diǎn).
(1)求直線與平面所成的角(結(jié)果用反三角函數(shù)表示);
(2)求過的平面與該正四棱柱所截得的多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱柱的底面是邊長為1的正方形,側(cè)棱垂直底邊ABCD四棱柱,,
E是側(cè)棱AA1的中點(diǎn),求
(1)求異面直線與B1E所成角的大;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角中.
(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)如圖1,在三棱錐P—ABC中,平面ABC,,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示。
(1)證明:平面PBC;
(2)求三棱錐D—ABC的體積;
(3)在的平分線上確定一點(diǎn)Q,使得平面ABD,并求此時PQ的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com