12、定義在R上的函數(shù)f(x)滿足f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù).給出下列結(jié)論:
①函數(shù)f(x)的最小正周期為4;
②函數(shù)f(x)的圖象關(guān)于(1,0)對稱;
③函數(shù)f(x)的圖象關(guān)于x=2對稱;
④函數(shù)f(x)的最大值為f(2).其中正確命題的序號(hào)是( 。
分析:由f(x+2)+f(x)=0可變形為f(x+4)=-f(x+2)=f(x)符合周期函數(shù)的定義,由函數(shù)f(x+1)為奇函數(shù)結(jié)合其定義可得到f(1-x)=-f(1+x),再變形為f(2-x)=-f(x)符合點(diǎn)對稱的定義從而得解.
解答:解:由f(x+2)+f(x)=0
可得f(x+4)=-f(x+2)=f(x)
∴其周期是4
由函數(shù)f(x+1)為奇函數(shù)
可得f(1-x)=-f(1+x)
可變形為:f(2-x)=-f(x)
可知函數(shù)f(x)圖象關(guān)于點(diǎn)(1,0)對稱
故選A
點(diǎn)評(píng):本題主要考查抽象函數(shù)中一些主條件的變形,來考查函數(shù)有關(guān)性質(zhì),方法往往是緊扣性質(zhì)的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案