設(shè)命題p:f(x)=2x2+mx+l在(0,+∞)內(nèi)單調(diào)遞增,命題q:m≥-1,則p是q的(  )
分析:利用命題p求出m的范圍,然后通過充要條件判斷正確選項(xiàng)即可.
解答:解:命題p:f(x)=2x2+mx+l在(0,+∞)內(nèi)單調(diào)遞增,所以-
m
4
≤0
,所以m≥0,
因?yàn)槊}q:m≥-1,所以m≥0則m≥-1成立,反之不成立,
所以p是q的充分不必要條件.
故選A.
點(diǎn)評:本題考查二次函數(shù)的單調(diào)性,必要條件、充分條件與充要條件的判斷,考查基本知識的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:f(x)=ax是減函數(shù),命題q:關(guān)于x的不等式x2+x+a>0的解集為R,如果“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:f(x)=
2x-m
在區(qū)間(2,+∞)上是減函數(shù);命題q:x1,x2是x2-ax-2=0(a∈[-1,1])的兩個(gè)實(shí)根,不等式m2+5m+3≥|x1-x2|對任意a∈[-1,1]都成立.若“p且q為真”,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1].設(shè)命題p:“f(x)的定義域?yàn)镽”;命題q:“f(x)的值域?yàn)镽”
(1)若命題p為真,求實(shí)數(shù)a的取值范圍;
(2)若命題q為真,求實(shí)數(shù)a的取值范圍;
(3)?p是q的什么條件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:f(x)=
2x-m
在區(qū)間(1,+∞)上是減函數(shù);命題q;x1x2是方程x2-ax-2=0的兩個(gè)實(shí)根,不等式m2+5m-3≥|x1-x2|對任意實(shí)數(shù)α∈[-1,1]恒成立;若¬p∧q為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:f(x)=ax(a>0,a≠1)是減函數(shù),命題q:關(guān)于x的不等式x2+x+a>0的解集為R,如果“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案